NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sb7h GIF version

Theorem sb7h 2121
Description: This version of dfsb7 2119 does not require that φ and z be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1616, i.e., that does not have the concept of a variable not occurring in a formula. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sb7h.1 (φzφ)
Assertion
Ref Expression
sb7h ([y / x]φz(z = y x(x = z φ)))
Distinct variable groups:   x,z   y,z
Allowed substitution hints:   φ(x,y,z)

Proof of Theorem sb7h
StepHypRef Expression
1 sb7h.1 . . 3 (φzφ)
21nfi 1551 . 2 zφ
32sb7f 2120 1 ([y / x]φz(z = y x(x = z φ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540  wex 1541  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator