New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb7f | GIF version |
Description: This version of dfsb7 2119 does not require that φ and z be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1616, i.e., that does not have the concept of a variable not occurring in a formula. (Contributed by NM, 26-Jul-2006.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
sb7f.1 | ⊢ Ⅎzφ |
Ref | Expression |
---|---|
sb7f | ⊢ ([y / x]φ ↔ ∃z(z = y ∧ ∃x(x = z ∧ φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5 2100 | . . 3 ⊢ ([z / x]φ ↔ ∃x(x = z ∧ φ)) | |
2 | 1 | sbbii 1653 | . 2 ⊢ ([y / z][z / x]φ ↔ [y / z]∃x(x = z ∧ φ)) |
3 | sb7f.1 | . . 3 ⊢ Ⅎzφ | |
4 | 3 | sbco2 2086 | . 2 ⊢ ([y / z][z / x]φ ↔ [y / x]φ) |
5 | sb5 2100 | . 2 ⊢ ([y / z]∃x(x = z ∧ φ) ↔ ∃z(z = y ∧ ∃x(x = z ∧ φ))) | |
6 | 2, 4, 5 | 3bitr3i 266 | 1 ⊢ ([y / x]φ ↔ ∃z(z = y ∧ ∃x(x = z ∧ φ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sb7h 2121 |
Copyright terms: Public domain | W3C validator |