New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb10f | GIF version |
Description: Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
sb10f.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
sb10f | ⊢ ([y / z]φ ↔ ∃x(x = y ∧ [x / z]φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb10f.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | nfsb 2109 | . . 3 ⊢ Ⅎx[y / z]φ |
3 | sbequ 2060 | . . 3 ⊢ (x = y → ([x / z]φ ↔ [y / z]φ)) | |
4 | 2, 3 | equsex 1962 | . 2 ⊢ (∃x(x = y ∧ [x / z]φ) ↔ [y / z]φ) |
5 | 4 | bicomi 193 | 1 ⊢ ([y / z]φ ↔ ∃x(x = y ∧ [x / z]φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |