NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbc6 GIF version

Theorem sbc6 3073
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
Hypothesis
Ref Expression
sbc6.1 A V
Assertion
Ref Expression
sbc6 ([̣A / xφx(x = Aφ))
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem sbc6
StepHypRef Expression
1 sbc6.1 . 2 A V
2 sbc6g 3072 . 2 (A V → ([̣A / xφx(x = Aφ)))
31, 2ax-mp 5 1 ([̣A / xφx(x = Aφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540   = wceq 1642   wcel 1710  Vcvv 2860  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048
This theorem is referenced by:  intab  3957
  Copyright terms: Public domain W3C validator