New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbc7 | GIF version |
Description: An equivalence for class substitution in the spirit of df-clab 2340. Note that x and A don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbc7 | ⊢ ([̣A / x]̣φ ↔ ∃y(y = A ∧ [̣y / x]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcco 3069 | . 2 ⊢ ([̣A / y]̣[̣y / x]̣φ ↔ [̣A / x]̣φ) | |
2 | sbc5 3071 | . 2 ⊢ ([̣A / y]̣[̣y / x]̣φ ↔ ∃y(y = A ∧ [̣y / x]̣φ)) | |
3 | 1, 2 | bitr3i 242 | 1 ⊢ ([̣A / x]̣φ ↔ ∃y(y = A ∧ [̣y / x]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |