New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbidm | GIF version |
Description: An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sbidm | ⊢ ([y / x][y / x]φ ↔ [y / x]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb2 2035 | . . 3 ⊢ [y / x]y = x | |
2 | sbequ12r 1920 | . . . 4 ⊢ (y = x → ([y / x]φ ↔ φ)) | |
3 | 2 | sbimi 1652 | . . 3 ⊢ ([y / x]y = x → [y / x]([y / x]φ ↔ φ)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ [y / x]([y / x]φ ↔ φ) |
5 | sbbi 2071 | . 2 ⊢ ([y / x]([y / x]φ ↔ φ) ↔ ([y / x][y / x]φ ↔ [y / x]φ)) | |
6 | 4, 5 | mpbi 199 | 1 ⊢ ([y / x][y / x]φ ↔ [y / x]φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |