NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbequ12r GIF version

Theorem sbequ12r 1920
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
sbequ12r (x = y → ([x / y]φφ))

Proof of Theorem sbequ12r
StepHypRef Expression
1 sbequ12 1919 . . 3 (y = x → (φ ↔ [x / y]φ))
21bicomd 192 . 2 (y = x → ([x / y]φφ))
32equcoms 1681 1 (x = y → ([x / y]φφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-sb 1649
This theorem is referenced by:  sbidm  2085  abbi  2464  opeliunxp  4821
  Copyright terms: Public domain W3C validator