| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbrbif | GIF version | ||
| Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbrbif.1 | ⊢ Ⅎxχ |
| sbrbif.2 | ⊢ ([y / x]φ ↔ ψ) |
| Ref | Expression |
|---|---|
| sbrbif | ⊢ ([y / x](φ ↔ χ) ↔ (ψ ↔ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbrbif.2 | . . 3 ⊢ ([y / x]φ ↔ ψ) | |
| 2 | 1 | sbrbis 2073 | . 2 ⊢ ([y / x](φ ↔ χ) ↔ (ψ ↔ [y / x]χ)) |
| 3 | sbrbif.1 | . . . 4 ⊢ Ⅎxχ | |
| 4 | 3 | sbf 2026 | . . 3 ⊢ ([y / x]χ ↔ χ) |
| 5 | 4 | bibi2i 304 | . 2 ⊢ ((ψ ↔ [y / x]χ) ↔ (ψ ↔ χ)) |
| 6 | 2, 5 | bitri 240 | 1 ⊢ ([y / x](φ ↔ χ) ↔ (ψ ↔ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 Ⅎwnf 1544 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |