New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simp2bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) |
Ref | Expression |
---|---|
simp2bi | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) | |
2 | 1 | biimpi 186 | . 2 ⊢ (φ → (ψ ∧ χ ∧ θ)) |
3 | 2 | simp2d 968 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: sfin111 4537 sbthlem3 6206 |
Copyright terms: Public domain | W3C validator |