NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simp2lr GIF version

Theorem simp2lr 1023
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2lr ((θ ((φ ψ) χ) τ) → ψ)

Proof of Theorem simp2lr
StepHypRef Expression
1 simplr 731 . 2 (((φ ψ) χ) → ψ)
213ad2ant2 977 1 ((θ ((φ ψ) χ) τ) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  nnpweq  4523  sfin112  4529
  Copyright terms: Public domain W3C validator