New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simplr | GIF version |
Description: Simplification of a conjunction. (Contributed by NM, 20-Mar-2007.) |
Ref | Expression |
---|---|
simplr | ⊢ (((φ ∧ ψ) ∧ χ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (ψ → ψ) | |
2 | 1 | ad2antlr 707 | 1 ⊢ (((φ ∧ ψ) ∧ χ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simp1lr 1019 simp2lr 1023 simp3lr 1027 ax11indalem 2197 ax11inda2ALT 2198 ifboth 3694 intab 3957 prepeano4 4452 leltfintr 4459 lenltfin 4470 tfinnn 4535 phi11lem1 4596 imainss 5043 ncssfin 6152 nntccl 6171 sbth 6207 leconnnc 6219 tlecg 6231 lemuc1 6254 ncslesuc 6268 spacind 6288 nchoicelem8 6297 nchoicelem19 6308 nchoice 6309 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |