| Step | Hyp | Ref
| Expression |
| 1 | | nnpweqlem1 4523 |
. . . 4
⊢ {m ∣ ∀a ∈ m ∀b ∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)} ∈
V |
| 2 | | raleq 2808 |
. . . . . 6
⊢ (m = 0c → (∀b ∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀b ∈ 0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 3 | 2 | raleqbi1dv 2816 |
. . . . 5
⊢ (m = 0c → (∀a ∈ m ∀b ∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀a ∈ 0c ∀b ∈ 0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 4 | | df-ral 2620 |
. . . . . 6
⊢ (∀a ∈ 0c ∀b ∈ 0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀a(a ∈
0c → ∀b ∈
0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 5 | | el0c 4422 |
. . . . . . . 8
⊢ (a ∈
0c ↔ a = ∅) |
| 6 | 5 | imbi1i 315 |
. . . . . . 7
⊢ ((a ∈
0c → ∀b ∈
0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) ↔
(a = ∅
→ ∀b ∈
0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 7 | 6 | albii 1566 |
. . . . . 6
⊢ (∀a(a ∈
0c → ∀b ∈
0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) ↔
∀a(a = ∅ → ∀b ∈ 0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 8 | | 0ex 4111 |
. . . . . . . 8
⊢ ∅ ∈
V |
| 9 | | pweq 3726 |
. . . . . . . . . . . . 13
⊢ (a = ∅ →
℘a =
℘∅) |
| 10 | | pw0 4161 |
. . . . . . . . . . . . 13
⊢ ℘∅ = {∅} |
| 11 | 9, 10 | syl6eq 2401 |
. . . . . . . . . . . 12
⊢ (a = ∅ →
℘a =
{∅}) |
| 12 | 11 | eleq1d 2419 |
. . . . . . . . . . 11
⊢ (a = ∅ →
(℘a
∈ n
↔ {∅} ∈ n)) |
| 13 | 12 | anbi1d 685 |
. . . . . . . . . 10
⊢ (a = ∅ →
((℘a
∈ n ∧ ℘b ∈ n) ↔ ({∅}
∈ n ∧ ℘b ∈ n))) |
| 14 | 13 | rexbidv 2636 |
. . . . . . . . 9
⊢ (a = ∅ →
(∃n
∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n))) |
| 15 | 14 | ralbidv 2635 |
. . . . . . . 8
⊢ (a = ∅ →
(∀b
∈ 0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀b ∈ 0c ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n))) |
| 16 | 8, 15 | ceqsalv 2886 |
. . . . . . 7
⊢ (∀a(a = ∅ →
∀b
∈ 0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) ↔ ∀b ∈ 0c ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n)) |
| 17 | | df-ral 2620 |
. . . . . . . 8
⊢ (∀b ∈ 0c ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n) ↔
∀b(b ∈ 0c → ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n))) |
| 18 | | el0c 4422 |
. . . . . . . . . 10
⊢ (b ∈
0c ↔ b = ∅) |
| 19 | 18 | imbi1i 315 |
. . . . . . . . 9
⊢ ((b ∈
0c → ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n)) ↔ (b =
∅ → ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n))) |
| 20 | 19 | albii 1566 |
. . . . . . . 8
⊢ (∀b(b ∈
0c → ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n)) ↔ ∀b(b = ∅ →
∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n))) |
| 21 | 17, 20 | bitri 240 |
. . . . . . 7
⊢ (∀b ∈ 0c ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n) ↔
∀b(b = ∅ → ∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n))) |
| 22 | | pweq 3726 |
. . . . . . . . . . . . 13
⊢ (b = ∅ →
℘b =
℘∅) |
| 23 | 22, 10 | syl6eq 2401 |
. . . . . . . . . . . 12
⊢ (b = ∅ →
℘b =
{∅}) |
| 24 | 23 | eleq1d 2419 |
. . . . . . . . . . 11
⊢ (b = ∅ →
(℘b
∈ n
↔ {∅} ∈ n)) |
| 25 | 24 | anbi2d 684 |
. . . . . . . . . 10
⊢ (b = ∅ →
(({∅} ∈
n ∧ ℘b ∈ n) ↔
({∅} ∈
n ∧ {∅} ∈ n))) |
| 26 | | anidm 625 |
. . . . . . . . . 10
⊢ (({∅} ∈ n ∧ {∅} ∈ n) ↔ {∅}
∈ n) |
| 27 | 25, 26 | syl6bb 252 |
. . . . . . . . 9
⊢ (b = ∅ →
(({∅} ∈
n ∧ ℘b ∈ n) ↔
{∅} ∈
n)) |
| 28 | 27 | rexbidv 2636 |
. . . . . . . 8
⊢ (b = ∅ →
(∃n
∈ Nn ({∅} ∈ n ∧ ℘b ∈ n) ↔
∃n ∈ Nn {∅} ∈ n)) |
| 29 | 8, 28 | ceqsalv 2886 |
. . . . . . 7
⊢ (∀b(b = ∅ →
∃n ∈ Nn ({∅} ∈ n ∧ ℘b ∈ n)) ↔
∃n ∈ Nn {∅} ∈ n) |
| 30 | 16, 21, 29 | 3bitri 262 |
. . . . . 6
⊢ (∀a(a = ∅ →
∀b
∈ 0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) ↔ ∃n ∈ Nn {∅} ∈ n) |
| 31 | 4, 7, 30 | 3bitri 262 |
. . . . 5
⊢ (∀a ∈ 0c ∀b ∈ 0c ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∃n ∈ Nn {∅} ∈ n) |
| 32 | 3, 31 | syl6bb 252 |
. . . 4
⊢ (m = 0c → (∀a ∈ m ∀b ∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∃n ∈ Nn {∅} ∈ n)) |
| 33 | | raleq 2808 |
. . . . 5
⊢ (m = k →
(∀b
∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 34 | 33 | raleqbi1dv 2816 |
. . . 4
⊢ (m = k →
(∀a
∈ m ∀b ∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 35 | | raleq 2808 |
. . . . . 6
⊢ (m = (k
+c 1c) → (∀b ∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀b ∈ (k
+c 1c)∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 36 | 35 | raleqbi1dv 2816 |
. . . . 5
⊢ (m = (k
+c 1c) → (∀a ∈ m ∀b ∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀a ∈ (k
+c 1c)∀b ∈ (k
+c 1c)∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 37 | | pweq 3726 |
. . . . . . . . . 10
⊢ (a = c →
℘a =
℘c) |
| 38 | 37 | eleq1d 2419 |
. . . . . . . . 9
⊢ (a = c →
(℘a
∈ n
↔ ℘c ∈ n)) |
| 39 | 38 | anbi1d 685 |
. . . . . . . 8
⊢ (a = c →
((℘a
∈ n ∧ ℘b ∈ n) ↔ (℘c ∈ n ∧ ℘b ∈ n))) |
| 40 | 39 | rexbidv 2636 |
. . . . . . 7
⊢ (a = c →
(∃n
∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∃n ∈ Nn (℘c ∈ n ∧ ℘b ∈ n))) |
| 41 | | pweq 3726 |
. . . . . . . . . 10
⊢ (b = d →
℘b =
℘d) |
| 42 | 41 | eleq1d 2419 |
. . . . . . . . 9
⊢ (b = d →
(℘b
∈ n
↔ ℘d ∈ n)) |
| 43 | 42 | anbi2d 684 |
. . . . . . . 8
⊢ (b = d →
((℘c
∈ n ∧ ℘b ∈ n) ↔ (℘c ∈ n ∧ ℘d ∈ n))) |
| 44 | 43 | rexbidv 2636 |
. . . . . . 7
⊢ (b = d →
(∃n
∈ Nn (℘c ∈ n ∧ ℘b ∈ n) ↔ ∃n ∈ Nn (℘c ∈ n ∧ ℘d ∈ n))) |
| 45 | 40, 44 | cbvral2v 2844 |
. . . . . 6
⊢ (∀a ∈ (k
+c 1c)∀b ∈ (k
+c 1c)∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀c ∈ (k
+c 1c)∀d ∈ (k
+c 1c)∃n ∈ Nn (℘c ∈ n ∧ ℘d ∈ n)) |
| 46 | | eleq2 2414 |
. . . . . . . . 9
⊢ (n = j →
(℘c
∈ n
↔ ℘c ∈ j)) |
| 47 | | eleq2 2414 |
. . . . . . . . 9
⊢ (n = j →
(℘d
∈ n
↔ ℘d ∈ j)) |
| 48 | 46, 47 | anbi12d 691 |
. . . . . . . 8
⊢ (n = j →
((℘c
∈ n ∧ ℘d ∈ n) ↔ (℘c ∈ j ∧ ℘d ∈ j))) |
| 49 | 48 | cbvrexv 2837 |
. . . . . . 7
⊢ (∃n ∈ Nn (℘c ∈ n ∧ ℘d ∈ n) ↔ ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j)) |
| 50 | 49 | 2ralbii 2641 |
. . . . . 6
⊢ (∀c ∈ (k
+c 1c)∀d ∈ (k
+c 1c)∃n ∈ Nn (℘c ∈ n ∧ ℘d ∈ n) ↔ ∀c ∈ (k
+c 1c)∀d ∈ (k
+c 1c)∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j)) |
| 51 | 45, 50 | bitri 240 |
. . . . 5
⊢ (∀a ∈ (k
+c 1c)∀b ∈ (k
+c 1c)∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀c ∈ (k
+c 1c)∀d ∈ (k
+c 1c)∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j)) |
| 52 | 36, 51 | syl6bb 252 |
. . . 4
⊢ (m = (k
+c 1c) → (∀a ∈ m ∀b ∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀c ∈ (k
+c 1c)∀d ∈ (k
+c 1c)∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j))) |
| 53 | | raleq 2808 |
. . . . 5
⊢ (m = M →
(∀b
∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀b ∈ M ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 54 | 53 | raleqbi1dv 2816 |
. . . 4
⊢ (m = M →
(∀a
∈ m ∀b ∈ m ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∀a ∈ M ∀b ∈ M ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n))) |
| 55 | | 1cnnc 4409 |
. . . . 5
⊢
1c ∈ Nn |
| 56 | 8 | snel1c 4141 |
. . . . 5
⊢ {∅} ∈
1c |
| 57 | | eleq2 2414 |
. . . . . 6
⊢ (n = 1c → ({∅} ∈ n ↔ {∅}
∈ 1c)) |
| 58 | 57 | rspcev 2956 |
. . . . 5
⊢
((1c ∈ Nn ∧ {∅} ∈
1c) → ∃n ∈ Nn {∅} ∈ n) |
| 59 | 55, 56, 58 | mp2an 653 |
. . . 4
⊢ ∃n ∈ Nn {∅} ∈ n |
| 60 | | reeanv 2779 |
. . . . . . . 8
⊢ (∃e ∈ k ∃f ∈ k (∃x ∈ ∼ ec = (e ∪ {x})
∧ ∃y ∈ ∼ fd = (f ∪ {y}))
↔ (∃e ∈ k ∃x ∈ ∼ ec = (e ∪ {x})
∧ ∃f ∈ k ∃y ∈ ∼ fd = (f ∪ {y}))) |
| 61 | | reeanv 2779 |
. . . . . . . . 9
⊢ (∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) ↔ (∃x ∈ ∼ ec = (e ∪ {x})
∧ ∃y ∈ ∼ fd = (f ∪ {y}))) |
| 62 | 61 | 2rexbii 2642 |
. . . . . . . 8
⊢ (∃e ∈ k ∃f ∈ k ∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) ↔ ∃e ∈ k ∃f ∈ k (∃x ∈ ∼ ec = (e ∪ {x})
∧ ∃y ∈ ∼ fd = (f ∪ {y}))) |
| 63 | | elsuc 4414 |
. . . . . . . . 9
⊢ (c ∈ (k +c 1c) ↔
∃e ∈ k ∃x ∈ ∼ ec = (e ∪ {x})) |
| 64 | | elsuc 4414 |
. . . . . . . . 9
⊢ (d ∈ (k +c 1c) ↔
∃f ∈ k ∃y ∈ ∼ fd = (f ∪ {y})) |
| 65 | 63, 64 | anbi12i 678 |
. . . . . . . 8
⊢ ((c ∈ (k +c 1c) ∧ d ∈ (k
+c 1c)) ↔ (∃e ∈ k ∃x ∈ ∼ ec = (e ∪ {x})
∧ ∃f ∈ k ∃y ∈ ∼ fd = (f ∪ {y}))) |
| 66 | 60, 62, 65 | 3bitr4ri 269 |
. . . . . . 7
⊢ ((c ∈ (k +c 1c) ∧ d ∈ (k
+c 1c)) ↔ ∃e ∈ k ∃f ∈ k ∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y}))) |
| 67 | | pweq 3726 |
. . . . . . . . . . . . . . . 16
⊢ (a = e →
℘a =
℘e) |
| 68 | 67 | eleq1d 2419 |
. . . . . . . . . . . . . . 15
⊢ (a = e →
(℘a
∈ n
↔ ℘e ∈ n)) |
| 69 | 68 | anbi1d 685 |
. . . . . . . . . . . . . 14
⊢ (a = e →
((℘a
∈ n ∧ ℘b ∈ n) ↔ (℘e ∈ n ∧ ℘b ∈ n))) |
| 70 | 69 | rexbidv 2636 |
. . . . . . . . . . . . 13
⊢ (a = e →
(∃n
∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∃n ∈ Nn (℘e ∈ n ∧ ℘b ∈ n))) |
| 71 | | pweq 3726 |
. . . . . . . . . . . . . . . 16
⊢ (b = f →
℘b =
℘f) |
| 72 | 71 | eleq1d 2419 |
. . . . . . . . . . . . . . 15
⊢ (b = f →
(℘b
∈ n
↔ ℘f ∈ n)) |
| 73 | 72 | anbi2d 684 |
. . . . . . . . . . . . . 14
⊢ (b = f →
((℘e
∈ n ∧ ℘b ∈ n) ↔ (℘e ∈ n ∧ ℘f ∈ n))) |
| 74 | 73 | rexbidv 2636 |
. . . . . . . . . . . . 13
⊢ (b = f →
(∃n
∈ Nn (℘e ∈ n ∧ ℘b ∈ n) ↔ ∃n ∈ Nn (℘e ∈ n ∧ ℘f ∈ n))) |
| 75 | 70, 74 | rspc2v 2962 |
. . . . . . . . . . . 12
⊢ ((e ∈ k ∧ f ∈ k) → (∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) → ∃n ∈ Nn (℘e ∈ n ∧ ℘f ∈ n))) |
| 76 | 75 | adantl 452 |
. . . . . . . . . . 11
⊢ ((k ∈ Nn ∧ (e ∈ k ∧ f ∈ k)) → (∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) → ∃n ∈ Nn (℘e ∈ n ∧ ℘f ∈ n))) |
| 77 | | nncaddccl 4420 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((n ∈ Nn ∧ n ∈ Nn ) → (n
+c n) ∈ Nn
) |
| 78 | 77 | anidms 626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (n ∈ Nn → (n
+c n) ∈ Nn
) |
| 79 | 78 | adantl 452 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((k ∈ Nn ∧ n ∈ Nn ) → (n
+c n) ∈ Nn
) |
| 80 | 79 | 3ad2ant1 976 |
. . . . . . . . . . . . . . . . . 18
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → (n
+c n) ∈ Nn
) |
| 81 | | simp1l 979 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → k
∈ Nn
) |
| 82 | | simp1r 980 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → n
∈ Nn
) |
| 83 | | simp2ll 1022 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → e
∈ k) |
| 84 | | simp3l 983 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → x
∈ ∼ e) |
| 85 | | simp2rl 1024 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → ℘e ∈ n) |
| 86 | | nnadjoinpw 4522 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ (e ∈ k ∧ x ∈ ∼ e) ∧ ℘e ∈ n) →
℘(e
∪ {x}) ∈ (n
+c n)) |
| 87 | 81, 82, 83, 84, 85, 86 | syl221anc 1193 |
. . . . . . . . . . . . . . . . . 18
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → ℘(e ∪
{x}) ∈
(n +c n)) |
| 88 | | simp2lr 1023 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → f
∈ k) |
| 89 | | simp3r 984 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → y
∈ ∼ f) |
| 90 | | simp2rr 1025 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → ℘f ∈ n) |
| 91 | | nnadjoinpw 4522 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ (f ∈ k ∧ y ∈ ∼ f) ∧ ℘f ∈ n) →
℘(f
∪ {y}) ∈ (n
+c n)) |
| 92 | 81, 82, 88, 89, 90, 91 | syl221anc 1193 |
. . . . . . . . . . . . . . . . . 18
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → ℘(f ∪
{y}) ∈
(n +c n)) |
| 93 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (j = (n
+c n) → (℘(e ∪
{x}) ∈
j ↔ ℘(e ∪
{x}) ∈
(n +c n))) |
| 94 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (j = (n
+c n) → (℘(f ∪
{y}) ∈
j ↔ ℘(f ∪
{y}) ∈
(n +c n))) |
| 95 | 93, 94 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . 19
⊢ (j = (n
+c n) → ((℘(e ∪
{x}) ∈
j ∧ ℘(f ∪
{y}) ∈
j) ↔ (℘(e ∪
{x}) ∈
(n +c n) ∧ ℘(f ∪
{y}) ∈
(n +c n)))) |
| 96 | 95 | rspcev 2956 |
. . . . . . . . . . . . . . . . . 18
⊢ (((n +c n) ∈ Nn ∧ (℘(e ∪
{x}) ∈
(n +c n) ∧ ℘(f ∪
{y}) ∈
(n +c n))) → ∃j ∈ Nn (℘(e ∪
{x}) ∈
j ∧ ℘(f ∪
{y}) ∈
j)) |
| 97 | 80, 87, 92, 96 | syl12anc 1180 |
. . . . . . . . . . . . . . . . 17
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → ∃j ∈ Nn (℘(e ∪
{x}) ∈
j ∧ ℘(f ∪
{y}) ∈
j)) |
| 98 | | pweq 3726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (c = (e ∪
{x}) → ℘c = ℘(e ∪
{x})) |
| 99 | 98 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . 19
⊢ (c = (e ∪
{x}) → (℘c ∈ j ↔
℘(e
∪ {x}) ∈ j)) |
| 100 | | pweq 3726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (d = (f ∪
{y}) → ℘d = ℘(f ∪
{y})) |
| 101 | 100 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . 19
⊢ (d = (f ∪
{y}) → (℘d ∈ j ↔
℘(f
∪ {y}) ∈ j)) |
| 102 | 99, 101 | bi2anan9 843 |
. . . . . . . . . . . . . . . . . 18
⊢ ((c = (e ∪
{x}) ∧
d = (f
∪ {y})) → ((℘c ∈ j ∧ ℘d ∈ j) ↔ (℘(e ∪
{x}) ∈
j ∧ ℘(f ∪
{y}) ∈
j))) |
| 103 | 102 | rexbidv 2636 |
. . . . . . . . . . . . . . . . 17
⊢ ((c = (e ∪
{x}) ∧
d = (f
∪ {y})) → (∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j) ↔ ∃j ∈ Nn (℘(e ∪
{x}) ∈
j ∧ ℘(f ∪
{y}) ∈
j))) |
| 104 | 97, 103 | syl5ibrcom 213 |
. . . . . . . . . . . . . . . 16
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n)) ∧ (x ∈ ∼ e ∧ y ∈ ∼ f)) → ((c =
(e ∪ {x}) ∧ d = (f ∪
{y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j))) |
| 105 | 104 | 3expia 1153 |
. . . . . . . . . . . . . . 15
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n))) → ((x
∈ ∼ e
∧ y ∈ ∼ f)
→ ((c = (e ∪ {x})
∧ d =
(f ∪ {y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j)))) |
| 106 | 105 | rexlimdvv 2745 |
. . . . . . . . . . . . . 14
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ ((e ∈ k ∧ f ∈ k) ∧ (℘e ∈ n ∧ ℘f ∈ n))) → (∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j))) |
| 107 | 106 | expr 598 |
. . . . . . . . . . . . 13
⊢ (((k ∈ Nn ∧ n ∈ Nn ) ∧ (e ∈ k ∧ f ∈ k)) → ((℘e ∈ n ∧ ℘f ∈ n) → (∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j)))) |
| 108 | 107 | an32s 779 |
. . . . . . . . . . . 12
⊢ (((k ∈ Nn ∧ (e ∈ k ∧ f ∈ k)) ∧ n ∈ Nn ) → ((℘e ∈ n ∧ ℘f ∈ n) → (∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j)))) |
| 109 | 108 | rexlimdva 2739 |
. . . . . . . . . . 11
⊢ ((k ∈ Nn ∧ (e ∈ k ∧ f ∈ k)) → (∃n ∈ Nn (℘e ∈ n ∧ ℘f ∈ n) → (∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j)))) |
| 110 | 76, 109 | syld 40 |
. . . . . . . . . 10
⊢ ((k ∈ Nn ∧ (e ∈ k ∧ f ∈ k)) → (∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) → (∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j)))) |
| 111 | 110 | imp 418 |
. . . . . . . . 9
⊢ (((k ∈ Nn ∧ (e ∈ k ∧ f ∈ k)) ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) → (∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j))) |
| 112 | 111 | an32s 779 |
. . . . . . . 8
⊢ (((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) ∧ (e ∈ k ∧ f ∈ k)) → (∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j))) |
| 113 | 112 | rexlimdvva 2746 |
. . . . . . 7
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) → (∃e ∈ k ∃f ∈ k ∃x ∈ ∼ e∃y ∈ ∼ f(c = (e ∪ {x})
∧ d =
(f ∪ {y})) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j))) |
| 114 | 66, 113 | syl5bi 208 |
. . . . . 6
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) → ((c
∈ (k
+c 1c) ∧
d ∈
(k +c
1c)) → ∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j))) |
| 115 | 114 | ralrimivv 2706 |
. . . . 5
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) → ∀c ∈ (k
+c 1c)∀d ∈ (k
+c 1c)∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j)) |
| 116 | 115 | ex 423 |
. . . 4
⊢ (k ∈ Nn → (∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) →
∀c
∈ (k
+c 1c)∀d ∈ (k
+c 1c)∃j ∈ Nn (℘c ∈ j ∧ ℘d ∈ j))) |
| 117 | 1, 32, 34, 52, 54, 59, 116 | finds 4412 |
. . 3
⊢ (M ∈ Nn → ∀a ∈ M ∀b ∈ M ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n)) |
| 118 | | pweq 3726 |
. . . . . . 7
⊢ (a = A →
℘a =
℘A) |
| 119 | 118 | eleq1d 2419 |
. . . . . 6
⊢ (a = A →
(℘a
∈ n
↔ ℘A ∈ n)) |
| 120 | 119 | anbi1d 685 |
. . . . 5
⊢ (a = A →
((℘a
∈ n ∧ ℘b ∈ n) ↔ (℘A ∈ n ∧ ℘b ∈ n))) |
| 121 | 120 | rexbidv 2636 |
. . . 4
⊢ (a = A →
(∃n
∈ Nn (℘a ∈ n ∧ ℘b ∈ n) ↔ ∃n ∈ Nn (℘A ∈ n ∧ ℘b ∈ n))) |
| 122 | | pweq 3726 |
. . . . . . 7
⊢ (b = B →
℘b =
℘B) |
| 123 | 122 | eleq1d 2419 |
. . . . . 6
⊢ (b = B →
(℘b
∈ n
↔ ℘B ∈ n)) |
| 124 | 123 | anbi2d 684 |
. . . . 5
⊢ (b = B →
((℘A
∈ n ∧ ℘b ∈ n) ↔ (℘A ∈ n ∧ ℘B ∈ n))) |
| 125 | 124 | rexbidv 2636 |
. . . 4
⊢ (b = B →
(∃n
∈ Nn (℘A ∈ n ∧ ℘b ∈ n) ↔ ∃n ∈ Nn (℘A ∈ n ∧ ℘B ∈ n))) |
| 126 | 121, 125 | rspc2v 2962 |
. . 3
⊢ ((A ∈ M ∧ B ∈ M) → (∀a ∈ M ∀b ∈ M ∃n ∈ Nn (℘a ∈ n ∧ ℘b ∈ n) → ∃n ∈ Nn (℘A ∈ n ∧ ℘B ∈ n))) |
| 127 | 117, 126 | syl5com 26 |
. 2
⊢ (M ∈ Nn → ((A ∈ M ∧ B ∈ M) →
∃n ∈ Nn (℘A ∈ n ∧ ℘B ∈ n))) |
| 128 | 127 | 3impib 1149 |
1
⊢ ((M ∈ Nn ∧ A ∈ M ∧ B ∈ M) → ∃n ∈ Nn (℘A ∈ n ∧ ℘B ∈ n)) |