New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spcimgft | GIF version |
Description: A closed version of spcimgf 2933. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimgft.1 | ⊢ Ⅎxψ |
spcimgft.2 | ⊢ ℲxA |
Ref | Expression |
---|---|
spcimgft | ⊢ (∀x(x = A → (φ → ψ)) → (A ∈ B → (∀xφ → ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ B → A ∈ V) | |
2 | spcimgft.2 | . . . . 5 ⊢ ℲxA | |
3 | 2 | issetf 2865 | . . . 4 ⊢ (A ∈ V ↔ ∃x x = A) |
4 | exim 1575 | . . . 4 ⊢ (∀x(x = A → (φ → ψ)) → (∃x x = A → ∃x(φ → ψ))) | |
5 | 3, 4 | syl5bi 208 | . . 3 ⊢ (∀x(x = A → (φ → ψ)) → (A ∈ V → ∃x(φ → ψ))) |
6 | spcimgft.1 | . . . 4 ⊢ Ⅎxψ | |
7 | 6 | 19.36 1871 | . . 3 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ψ)) |
8 | 5, 7 | syl6ib 217 | . 2 ⊢ (∀x(x = A → (φ → ψ)) → (A ∈ V → (∀xφ → ψ))) |
9 | 1, 8 | syl5 28 | 1 ⊢ (∀x(x = A → (φ → ψ)) → (A ∈ B → (∀xφ → ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: spcgft 2932 spcimgf 2933 spcimdv 2937 |
Copyright terms: Public domain | W3C validator |