NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spsd GIF version

Theorem spsd 1755
Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.)
Hypothesis
Ref Expression
spsd.1 (φ → (ψχ))
Assertion
Ref Expression
spsd (φ → (xψχ))

Proof of Theorem spsd
StepHypRef Expression
1 sp 1747 . 2 (xψψ)
2 spsd.1 . 2 (φ → (ψχ))
31, 2syl5 28 1 (φ → (xψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  ax10lem4  1941  moexex  2273
  Copyright terms: Public domain W3C validator