New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sps | GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
sps | ⊢ (∀xφ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1747 | . 2 ⊢ (∀xφ → φ) | |
2 | sps.1 | . 2 ⊢ (φ → ψ) | |
3 | 1, 2 | syl 15 | 1 ⊢ (∀xφ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 19.2g 1757 ax10lem4 1941 ax10lem6 1943 ax10o 1952 cbv1h 1978 equveli 1988 ax11v2 1992 drsb1 2022 dfsb2 2055 sbequi 2059 drsb2 2061 sbn 2062 sbi1 2063 nfsb4t 2080 sbco2 2086 sbcom 2089 sbcom2 2114 sbal1 2126 eujustALT 2207 mopick 2266 eupickbi 2270 ralcom2 2775 ceqsalg 2883 reu6 3025 sbcal 3093 csbie2t 3180 reldisj 3594 dfnfc2 3909 mosubopt 4612 ssopab2 4712 dfid3 4768 fununi 5160 fv3 5341 fnoprabg 5585 fundmen 6043 |
Copyright terms: Public domain | W3C validator |