New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sps | GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
sps | ⊢ (∀xφ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1747 | . 2 ⊢ (∀xφ → φ) | |
2 | sps.1 | . 2 ⊢ (φ → ψ) | |
3 | 1, 2 | syl 15 | 1 ⊢ (∀xφ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 19.2g 1757 ax10lem4 1941 ax10lem6 1943 ax10o 1952 cbv1h 1978 equveli 1988 ax11v2 1992 drsb1 2022 dfsb2 2055 sbequi 2059 drsb2 2061 sbn 2062 sbi1 2063 nfsb4t 2080 sbco2 2086 sbcom 2089 sbcom2 2114 sbal1 2126 eujustALT 2207 mopick 2266 eupickbi 2270 ralcom2 2776 ceqsalg 2884 reu6 3026 sbcal 3094 csbie2t 3181 reldisj 3595 dfnfc2 3910 mosubopt 4613 ssopab2 4713 dfid3 4769 fununi 5161 fv3 5342 fnoprabg 5586 fundmen 6044 |
Copyright terms: Public domain | W3C validator |