NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssdif2d GIF version

Theorem ssdif2d 3406
Description: If A is contained in B and C is contained in D, then (A D) is contained in (B C). Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssdifd.1 (φA B)
ssdif2d.2 (φC D)
Assertion
Ref Expression
ssdif2d (φ → (A D) (B C))

Proof of Theorem ssdif2d
StepHypRef Expression
1 ssdif2d.2 . . 3 (φC D)
21sscond 3404 . 2 (φ → (A D) (A C))
3 ssdifd.1 . . 3 (φA B)
43ssdifd 3403 . 2 (φ → (A C) (B C))
52, 4sstrd 3283 1 (φ → (A D) (B C))
Colors of variables: wff setvar class
Syntax hints:  wi 4   cdif 3207   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator