| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > syl5eleq | GIF version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| syl5eleq.1 | ⊢ A ∈ B |
| syl5eleq.2 | ⊢ (φ → B = C) |
| Ref | Expression |
|---|---|
| syl5eleq | ⊢ (φ → A ∈ C) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5eleq.1 | . . 3 ⊢ A ∈ B | |
| 2 | 1 | a1i 10 | . 2 ⊢ (φ → A ∈ B) |
| 3 | syl5eleq.2 | . 2 ⊢ (φ → B = C) | |
| 4 | 2, 3 | eleqtrd 2429 | 1 ⊢ (φ → A ∈ C) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
| This theorem is referenced by: syl5eleqr 2440 enadj 6061 |
| Copyright terms: Public domain | W3C validator |