New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5eqelr | GIF version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eqelr.1 | ⊢ B = A |
syl5eqelr.2 | ⊢ (φ → B ∈ C) |
Ref | Expression |
---|---|
syl5eqelr | ⊢ (φ → A ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqelr.1 | . . 3 ⊢ B = A | |
2 | 1 | eqcomi 2357 | . 2 ⊢ A = B |
3 | syl5eqelr.2 | . 2 ⊢ (φ → B ∈ C) | |
4 | 2, 3 | syl5eqel 2437 | 1 ⊢ (φ → A ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: xpkexg 4289 pw1exb 4327 nncaddccl 4420 0cminle 4462 vfinspsslem1 4551 opexb 4604 cnvexb 5104 epprc 5828 frds 5936 ovmuc 6131 ovcelem1 6172 ce2t 6236 addccan2nclem2 6265 fnfreclem1 6318 elscan 6331 |
Copyright terms: Public domain | W3C validator |