New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eleqtrd | GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrd.1 | ⊢ (φ → A ∈ B) |
eleqtrd.2 | ⊢ (φ → B = C) |
Ref | Expression |
---|---|
eleqtrd | ⊢ (φ → A ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrd.1 | . 2 ⊢ (φ → A ∈ B) | |
2 | eleqtrd.2 | . . 3 ⊢ (φ → B = C) | |
3 | 2 | eleq2d 2420 | . 2 ⊢ (φ → (A ∈ B ↔ A ∈ C)) |
4 | 1, 3 | mpbid 201 | 1 ⊢ (φ → A ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eleqtrrd 2430 3eltr3d 2433 syl5eleq 2439 syl6eleq 2443 prepeano4 4452 tfinpw1 4495 sfintfin 4533 sfinltfin 4536 fnbr 5186 ecelqsdm 5995 enadjlem1 6060 nenpw1pwlem2 6086 spaccl 6287 fnfreclem3 6320 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |