Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . 4
⊢ t ∈
V |
2 | | opeqex 4622 |
. . . 4
⊢ (t ∈ V → ∃y∃z t = 〈y, z〉) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢ ∃y∃z t = 〈y, z〉 |
4 | | dmcoss 4972 |
. . . . . . . . . 10
⊢ dom (R ∘ F) ⊆ dom F |
5 | | opeldm 4911 |
. . . . . . . . . 10
⊢ (〈x, y〉 ∈ (R ∘ F) →
x ∈ dom
(R ∘
F)) |
6 | 4, 5 | sseldi 3272 |
. . . . . . . . 9
⊢ (〈x, y〉 ∈ (R ∘ F) →
x ∈ dom
F) |
7 | 6 | pm4.71ri 614 |
. . . . . . . 8
⊢ (〈x, y〉 ∈ (R ∘ F) ↔
(x ∈ dom
F ∧ 〈x, y〉 ∈ (R ∘ F))) |
8 | 7 | anbi1i 676 |
. . . . . . 7
⊢ ((〈x, y〉 ∈ (R ∘ F) ∧ 〈x, z〉 ∈ (S ∘ F)) ↔ ((x
∈ dom F
∧ 〈x, y〉 ∈ (R ∘ F)) ∧ 〈x, z〉 ∈ (S ∘ F))) |
9 | | anass 630 |
. . . . . . 7
⊢ (((x ∈ dom F ∧ 〈x, y〉 ∈ (R ∘ F)) ∧ 〈x, z〉 ∈ (S ∘ F)) ↔ (x
∈ dom F
∧ (〈x, y〉 ∈ (R ∘ F) ∧ 〈x, z〉 ∈ (S ∘ F)))) |
10 | | fvex 5340 |
. . . . . . . . . . 11
⊢ (F ‘x)
∈ V |
11 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (t = (F
‘x) → (tRy ↔ (F
‘x)Ry)) |
12 | 10, 11 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃t(t = (F
‘x) ∧ tRy) ↔
(F ‘x)Ry) |
13 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (t = (F
‘x) → (tSz ↔ (F
‘x)Sz)) |
14 | 10, 13 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃t(t = (F
‘x) ∧ tSz) ↔
(F ‘x)Sz) |
15 | 12, 14 | anbi12i 678 |
. . . . . . . . 9
⊢ ((∃t(t = (F
‘x) ∧ tRy) ∧ ∃t(t = (F ‘x)
∧ tSz)) ↔ ((F
‘x)Ry ∧ (F
‘x)Sz)) |
16 | | eqcom 2355 |
. . . . . . . . . . . . . 14
⊢ (t = (F
‘x) ↔ (F ‘x) =
t) |
17 | | txpcofun.1 |
. . . . . . . . . . . . . . 15
⊢ Fun F |
18 | | funbrfvb 5361 |
. . . . . . . . . . . . . . 15
⊢ ((Fun F ∧ x ∈ dom F) → ((F
‘x) = t ↔ xFt)) |
19 | 17, 18 | mpan 651 |
. . . . . . . . . . . . . 14
⊢ (x ∈ dom F → ((F
‘x) = t ↔ xFt)) |
20 | 16, 19 | syl5bb 248 |
. . . . . . . . . . . . 13
⊢ (x ∈ dom F → (t =
(F ‘x) ↔ xFt)) |
21 | 20 | anbi1d 685 |
. . . . . . . . . . . 12
⊢ (x ∈ dom F → ((t =
(F ‘x) ∧ tRy) ↔ (xFt ∧ tRy))) |
22 | 21 | exbidv 1626 |
. . . . . . . . . . 11
⊢ (x ∈ dom F → (∃t(t = (F
‘x) ∧ tRy) ↔ ∃t(xFt ∧ tRy))) |
23 | | opelco 4885 |
. . . . . . . . . . 11
⊢ (〈x, y〉 ∈ (R ∘ F) ↔
∃t(xFt ∧ tRy)) |
24 | 22, 23 | syl6bbr 254 |
. . . . . . . . . 10
⊢ (x ∈ dom F → (∃t(t = (F
‘x) ∧ tRy) ↔ 〈x, y〉 ∈ (R ∘ F))) |
25 | 20 | anbi1d 685 |
. . . . . . . . . . . 12
⊢ (x ∈ dom F → ((t =
(F ‘x) ∧ tSz) ↔ (xFt ∧ tSz))) |
26 | 25 | exbidv 1626 |
. . . . . . . . . . 11
⊢ (x ∈ dom F → (∃t(t = (F
‘x) ∧ tSz) ↔ ∃t(xFt ∧ tSz))) |
27 | | opelco 4885 |
. . . . . . . . . . 11
⊢ (〈x, z〉 ∈ (S ∘ F) ↔
∃t(xFt ∧ tSz)) |
28 | 26, 27 | syl6bbr 254 |
. . . . . . . . . 10
⊢ (x ∈ dom F → (∃t(t = (F
‘x) ∧ tSz) ↔ 〈x, z〉 ∈ (S ∘ F))) |
29 | 24, 28 | anbi12d 691 |
. . . . . . . . 9
⊢ (x ∈ dom F → ((∃t(t = (F
‘x) ∧ tRy) ∧ ∃t(t = (F ‘x)
∧ tSz)) ↔ (〈x, y〉 ∈ (R ∘ F) ∧ 〈x, z〉 ∈ (S ∘ F)))) |
30 | 15, 29 | syl5rbbr 251 |
. . . . . . . 8
⊢ (x ∈ dom F → ((〈x, y〉 ∈ (R ∘ F) ∧ 〈x, z〉 ∈ (S ∘ F)) ↔ ((F
‘x)Ry ∧ (F
‘x)Sz))) |
31 | 30 | pm5.32i 618 |
. . . . . . 7
⊢ ((x ∈ dom F ∧ (〈x, y〉 ∈ (R ∘ F) ∧ 〈x, z〉 ∈ (S ∘ F))) ↔ (x
∈ dom F
∧ ((F
‘x)Ry ∧ (F
‘x)Sz))) |
32 | 8, 9, 31 | 3bitrri 263 |
. . . . . 6
⊢ ((x ∈ dom F ∧ ((F ‘x)Ry ∧ (F ‘x)Sz)) ↔ (〈x, y〉 ∈ (R ∘ F) ∧ 〈x, z〉 ∈ (S ∘ F))) |
33 | | opelco 4885 |
. . . . . . 7
⊢ (〈x, 〈y, z〉〉 ∈ ((R ⊗ S)
∘ F)
↔ ∃t(xFt ∧ t(R ⊗ S)〈y, z〉)) |
34 | | 19.41v 1901 |
. . . . . . . 8
⊢ (∃t(xFt ∧ ((F ‘x)Ry ∧ (F ‘x)Sz)) ↔ (∃t xFt ∧ ((F ‘x)Ry ∧ (F ‘x)Sz))) |
35 | | funbrfv 5357 |
. . . . . . . . . . . 12
⊢ (Fun F → (xFt → (F
‘x) = t)) |
36 | 17, 35 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (xFt → (F
‘x) = t) |
37 | | trtxp 5782 |
. . . . . . . . . . . 12
⊢ ((F ‘x)(R ⊗
S)〈y, z〉 ↔
((F ‘x)Ry ∧ (F ‘x)Sz)) |
38 | | breq1 4643 |
. . . . . . . . . . . 12
⊢ ((F ‘x) =
t → ((F ‘x)(R ⊗
S)〈y, z〉 ↔ t(R ⊗
S)〈y, z〉)) |
39 | 37, 38 | syl5rbbr 251 |
. . . . . . . . . . 11
⊢ ((F ‘x) =
t → (t(R ⊗
S)〈y, z〉 ↔
((F ‘x)Ry ∧ (F ‘x)Sz))) |
40 | 36, 39 | syl 15 |
. . . . . . . . . 10
⊢ (xFt → (t(R ⊗
S)〈y, z〉 ↔
((F ‘x)Ry ∧ (F ‘x)Sz))) |
41 | 40 | pm5.32i 618 |
. . . . . . . . 9
⊢ ((xFt ∧ t(R ⊗
S)〈y, z〉) ↔
(xFt ∧ ((F
‘x)Ry ∧ (F
‘x)Sz))) |
42 | 41 | exbii 1582 |
. . . . . . . 8
⊢ (∃t(xFt ∧ t(R ⊗
S)〈y, z〉) ↔ ∃t(xFt ∧ ((F ‘x)Ry ∧ (F ‘x)Sz))) |
43 | | eldm 4899 |
. . . . . . . . 9
⊢ (x ∈ dom F ↔ ∃t xFt) |
44 | 43 | anbi1i 676 |
. . . . . . . 8
⊢ ((x ∈ dom F ∧ ((F ‘x)Ry ∧ (F ‘x)Sz)) ↔ (∃t xFt ∧ ((F ‘x)Ry ∧ (F ‘x)Sz))) |
45 | 34, 42, 44 | 3bitr4i 268 |
. . . . . . 7
⊢ (∃t(xFt ∧ t(R ⊗
S)〈y, z〉) ↔
(x ∈ dom
F ∧
((F ‘x)Ry ∧ (F ‘x)Sz))) |
46 | 33, 45 | bitri 240 |
. . . . . 6
⊢ (〈x, 〈y, z〉〉 ∈ ((R ⊗ S)
∘ F)
↔ (x ∈ dom F ∧ ((F
‘x)Ry ∧ (F
‘x)Sz))) |
47 | | oteltxp 5783 |
. . . . . 6
⊢ (〈x, 〈y, z〉〉 ∈ ((R ∘ F) ⊗ (S
∘ F))
↔ (〈x, y〉 ∈ (R ∘ F) ∧ 〈x, z〉 ∈ (S ∘ F))) |
48 | 32, 46, 47 | 3bitr4i 268 |
. . . . 5
⊢ (〈x, 〈y, z〉〉 ∈ ((R ⊗ S)
∘ F)
↔ 〈x, 〈y, z〉〉 ∈ ((R ∘ F) ⊗
(S ∘
F))) |
49 | | opeq2 4580 |
. . . . . . 7
⊢ (t = 〈y, z〉 → 〈x, t〉 = 〈x, 〈y, z〉〉) |
50 | 49 | eleq1d 2419 |
. . . . . 6
⊢ (t = 〈y, z〉 → (〈x, t〉 ∈ ((R ⊗
S) ∘
F) ↔ 〈x, 〈y, z〉〉 ∈ ((R ⊗ S)
∘ F))) |
51 | 49 | eleq1d 2419 |
. . . . . 6
⊢ (t = 〈y, z〉 → (〈x, t〉 ∈ ((R ∘ F) ⊗
(S ∘
F)) ↔ 〈x, 〈y, z〉〉 ∈ ((R ∘ F) ⊗ (S
∘ F)))) |
52 | 50, 51 | bibi12d 312 |
. . . . 5
⊢ (t = 〈y, z〉 → ((〈x, t〉 ∈ ((R ⊗
S) ∘
F) ↔ 〈x, t〉 ∈ ((R ∘ F) ⊗
(S ∘
F))) ↔ (〈x, 〈y, z〉〉 ∈ ((R ⊗ S)
∘ F)
↔ 〈x, 〈y, z〉〉 ∈ ((R ∘ F) ⊗
(S ∘
F))))) |
53 | 48, 52 | mpbiri 224 |
. . . 4
⊢ (t = 〈y, z〉 → (〈x, t〉 ∈ ((R ⊗
S) ∘
F) ↔ 〈x, t〉 ∈ ((R ∘ F) ⊗
(S ∘
F)))) |
54 | 53 | exlimivv 1635 |
. . 3
⊢ (∃y∃z t = 〈y, z〉 → (〈x, t〉 ∈ ((R ⊗
S) ∘
F) ↔ 〈x, t〉 ∈ ((R ∘ F) ⊗
(S ∘
F)))) |
55 | 3, 54 | ax-mp 5 |
. 2
⊢ (〈x, t〉 ∈ ((R ⊗
S) ∘
F) ↔ 〈x, t〉 ∈ ((R ∘ F) ⊗
(S ∘
F))) |
56 | 55 | eqrelriv 4851 |
1
⊢ ((R ⊗ S)
∘ F) =
((R ∘
F) ⊗ (S ∘ F)) |