NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5rbb GIF version

Theorem syl5rbb 249
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl5rbb.1 (φψ)
syl5rbb.2 (χ → (ψθ))
Assertion
Ref Expression
syl5rbb (χ → (θφ))

Proof of Theorem syl5rbb
StepHypRef Expression
1 syl5rbb.1 . . 3 (φψ)
2 syl5rbb.2 . . 3 (χ → (ψθ))
31, 2syl5bb 248 . 2 (χ → (φθ))
43bicomd 192 1 (χ → (θφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  syl5rbbr  251  csbabg  3198  uniiunlem  3354  opkelimagekg  4272  setswith  4322  fnresdisj  5194  f1oiso  5500
  Copyright terms: Public domain W3C validator