Proof of Theorem sbco3
Step | Hyp | Ref
| Expression |
1 | | drsb1 2022 |
. . 3
⊢ (∀x x = y →
([z / x][y / x]φ ↔
[z / y][y / x]φ)) |
2 | | sbequ12a 1921 |
. . . . 5
⊢ (x = y →
([y / x]φ ↔
[x / y]φ)) |
3 | 2 | alimi 1559 |
. . . 4
⊢ (∀x x = y →
∀x([y / x]φ ↔
[x / y]φ)) |
4 | | spsbbi 2077 |
. . . 4
⊢ (∀x([y / x]φ ↔ [x / y]φ) → ([z / x][y / x]φ ↔ [z / x][x / y]φ)) |
5 | 3, 4 | syl 15 |
. . 3
⊢ (∀x x = y →
([z / x][y / x]φ ↔
[z / x][x / y]φ)) |
6 | 1, 5 | bitr3d 246 |
. 2
⊢ (∀x x = y →
([z / y][y / x]φ ↔
[z / x][x / y]φ)) |
7 | | sbco 2083 |
. . . 4
⊢ ([x / y][y / x]φ ↔ [x / y]φ) |
8 | 7 | sbbii 1653 |
. . 3
⊢ ([z / x][x / y][y / x]φ ↔ [z / x][x / y]φ) |
9 | | nfnae 1956 |
. . . 4
⊢ Ⅎy ¬ ∀x x = y |
10 | | nfnae 1956 |
. . . 4
⊢ Ⅎx ¬ ∀x x = y |
11 | | nfsb2 2058 |
. . . 4
⊢ (¬ ∀x x = y →
Ⅎx[y / x]φ) |
12 | 9, 10, 11 | sbco2d 2087 |
. . 3
⊢ (¬ ∀x x = y →
([z / x][x / y][y / x]φ ↔
[z / y][y / x]φ)) |
13 | 8, 12 | syl5rbbr 251 |
. 2
⊢ (¬ ∀x x = y →
([z / y][y / x]φ ↔
[z / x][x / y]φ)) |
14 | 6, 13 | pm2.61i 156 |
1
⊢ ([z / y][y / x]φ ↔ [z / x][x / y]φ) |