Step | Hyp | Ref
| Expression |
1 | | sneq 3745 |
. . . . . 6
⊢ (x = B →
{x} = {B}) |
2 | | reseq2 4930 |
. . . . . . . 8
⊢ ({x} = {B} →
(F ↾
{x}) = (F ↾ {B})) |
3 | 2 | feq1d 5215 |
. . . . . . 7
⊢ ({x} = {B} →
((F ↾
{x}):{x}–→C
↔ (F ↾ {B}):{x}–→C)) |
4 | | feq2 5212 |
. . . . . . 7
⊢ ({x} = {B} →
((F ↾
{B}):{x}–→C
↔ (F ↾ {B}):{B}–→C)) |
5 | 3, 4 | bitrd 244 |
. . . . . 6
⊢ ({x} = {B} →
((F ↾
{x}):{x}–→C
↔ (F ↾ {B}):{B}–→C)) |
6 | 1, 5 | syl 15 |
. . . . 5
⊢ (x = B →
((F ↾
{x}):{x}–→C
↔ (F ↾ {B}):{B}–→C)) |
7 | | fveq2 5329 |
. . . . . 6
⊢ (x = B →
(F ‘x) = (F
‘B)) |
8 | 7 | eleq1d 2419 |
. . . . 5
⊢ (x = B →
((F ‘x) ∈ C ↔ (F
‘B) ∈ C)) |
9 | 6, 8 | bibi12d 312 |
. . . 4
⊢ (x = B →
(((F ↾
{x}):{x}–→C
↔ (F ‘x) ∈ C) ↔ ((F
↾ {B}):{B}–→C
↔ (F ‘B) ∈ C))) |
10 | 9 | imbi2d 307 |
. . 3
⊢ (x = B →
((F Fn A → ((F
↾ {x}):{x}–→C
↔ (F ‘x) ∈ C)) ↔ (F Fn
A → ((F ↾ {B}):{B}–→C
↔ (F ‘B) ∈ C)))) |
11 | | fnressn 5439 |
. . . . 5
⊢ ((F Fn A ∧ x ∈ A) →
(F ↾
{x}) = {〈x, (F ‘x)〉}) |
12 | | vex 2863 |
. . . . . . . . . . 11
⊢ x ∈
V |
13 | 12 | snid 3761 |
. . . . . . . . . 10
⊢ x ∈ {x} |
14 | | fvres 5343 |
. . . . . . . . . 10
⊢ (x ∈ {x} → ((F
↾ {x})
‘x) = (F ‘x)) |
15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢ ((F ↾ {x}) ‘x) =
(F ‘x) |
16 | 15 | opeq2i 4583 |
. . . . . . . 8
⊢ 〈x, ((F ↾ {x}) ‘x)〉 = 〈x, (F ‘x)〉 |
17 | 16 | sneqi 3746 |
. . . . . . 7
⊢ {〈x, ((F ↾ {x}) ‘x)〉} = {〈x, (F ‘x)〉} |
18 | 17 | eqeq2i 2363 |
. . . . . 6
⊢ ((F ↾ {x}) = {〈x, ((F ↾ {x})
‘x)〉} ↔ (F
↾ {x}) =
{〈x,
(F ‘x)〉}) |
19 | 12 | fsn2 5435 |
. . . . . . 7
⊢ ((F ↾ {x}):{x}–→C
↔ (((F ↾ {x})
‘x) ∈ C ∧ (F ↾ {x}) =
{〈x,
((F ↾
{x}) ‘x)〉})) |
20 | 15 | eleq1i 2416 |
. . . . . . . 8
⊢ (((F ↾ {x}) ‘x)
∈ C
↔ (F ‘x) ∈ C) |
21 | | iba 489 |
. . . . . . . 8
⊢ ((F ↾ {x}) = {〈x, ((F ↾ {x})
‘x)〉} → (((F
↾ {x})
‘x) ∈ C ↔
(((F ↾
{x}) ‘x) ∈ C ∧ (F ↾ {x}) = {〈x, ((F ↾ {x})
‘x)〉}))) |
22 | 20, 21 | syl5rbbr 251 |
. . . . . . 7
⊢ ((F ↾ {x}) = {〈x, ((F ↾ {x})
‘x)〉} → ((((F
↾ {x})
‘x) ∈ C ∧ (F ↾ {x}) =
{〈x,
((F ↾
{x}) ‘x)〉}) ↔
(F ‘x) ∈ C)) |
23 | 19, 22 | syl5bb 248 |
. . . . . 6
⊢ ((F ↾ {x}) = {〈x, ((F ↾ {x})
‘x)〉} → ((F
↾ {x}):{x}–→C
↔ (F ‘x) ∈ C)) |
24 | 18, 23 | sylbir 204 |
. . . . 5
⊢ ((F ↾ {x}) = {〈x, (F
‘x)〉} → ((F
↾ {x}):{x}–→C
↔ (F ‘x) ∈ C)) |
25 | 11, 24 | syl 15 |
. . . 4
⊢ ((F Fn A ∧ x ∈ A) →
((F ↾
{x}):{x}–→C
↔ (F ‘x) ∈ C)) |
26 | 25 | expcom 424 |
. . 3
⊢ (x ∈ A → (F Fn
A → ((F ↾ {x}):{x}–→C
↔ (F ‘x) ∈ C))) |
27 | 10, 26 | vtoclga 2921 |
. 2
⊢ (B ∈ A → (F Fn
A → ((F ↾ {B}):{B}–→C
↔ (F ‘B) ∈ C))) |
28 | 27 | impcom 419 |
1
⊢ ((F Fn A ∧ B ∈ A) →
((F ↾
{B}):{B}–→C
↔ (F ‘B) ∈ C)) |