Proof of Theorem sbal2
Step | Hyp | Ref
| Expression |
1 | | alcom 1737 |
. . 3
⊢ (∀y∀x(y = z →
φ) ↔ ∀x∀y(y = z →
φ)) |
2 | | nfnae 1956 |
. . . 4
⊢ Ⅎy ¬ ∀x x = y |
3 | | nfnae 1956 |
. . . . . 6
⊢ Ⅎx ¬ ∀x x = y |
4 | | dveeq1 2018 |
. . . . . 6
⊢ (¬ ∀x x = y →
(y = z
→ ∀x y = z)) |
5 | 3, 4 | nfd 1766 |
. . . . 5
⊢ (¬ ∀x x = y →
Ⅎx y = z) |
6 | | 19.21t 1795 |
. . . . 5
⊢ (Ⅎx y = z → (∀x(y = z →
φ) ↔ (y = z →
∀xφ))) |
7 | 5, 6 | syl 15 |
. . . 4
⊢ (¬ ∀x x = y →
(∀x(y = z → φ)
↔ (y = z → ∀xφ))) |
8 | 2, 7 | albid 1772 |
. . 3
⊢ (¬ ∀x x = y →
(∀y∀x(y = z → φ)
↔ ∀y(y = z → ∀xφ))) |
9 | 1, 8 | syl5rbbr 251 |
. 2
⊢ (¬ ∀x x = y →
(∀y(y = z → ∀xφ) ↔ ∀x∀y(y = z →
φ))) |
10 | | sb6 2099 |
. 2
⊢ ([z / y]∀xφ ↔ ∀y(y = z →
∀xφ)) |
11 | | sb6 2099 |
. . 3
⊢ ([z / y]φ ↔ ∀y(y = z →
φ)) |
12 | 11 | albii 1566 |
. 2
⊢ (∀x[z / y]φ ↔ ∀x∀y(y = z →
φ)) |
13 | 9, 10, 12 | 3bitr4g 279 |
1
⊢ (¬ ∀x x = y →
([z / y]∀xφ ↔
∀x[z / y]φ)) |