Step | Hyp | Ref
| Expression |
1 | | elssuni 3920 |
. . 3
⊢ (A ∈ Nn → A ⊆ ∪ Nn ) |
2 | | df-fin 4381 |
. . 3
⊢ Fin = ∪ Nn |
3 | 1, 2 | syl6sseqr 3319 |
. 2
⊢ (A ∈ Nn → A ⊆ Fin
) |
4 | | dfss2 3263 |
. . . 4
⊢ (A ⊆ Fin ↔ ∀x(x ∈ A →
x ∈ Fin )) |
5 | | elfin 4421 |
. . . . . . 7
⊢ (x ∈ Fin ↔ ∃y ∈ Nn x ∈ y) |
6 | 5 | imbi2i 303 |
. . . . . 6
⊢ ((x ∈ A → x ∈ Fin ) ↔
(x ∈
A → ∃y ∈ Nn x ∈ y)) |
7 | | peano1 4403 |
. . . . . . 7
⊢
0c ∈ Nn |
8 | | ne0i 3557 |
. . . . . . 7
⊢
(0c ∈ Nn → Nn ≠ ∅) |
9 | | r19.37zv 3647 |
. . . . . . 7
⊢ ( Nn ≠ ∅ →
(∃y
∈ Nn (x ∈ A → x ∈ y) ↔
(x ∈
A → ∃y ∈ Nn x ∈ y))) |
10 | 7, 8, 9 | mp2b 9 |
. . . . . 6
⊢ (∃y ∈ Nn (x ∈ A → x ∈ y) ↔
(x ∈
A → ∃y ∈ Nn x ∈ y)) |
11 | 6, 10 | bitr4i 243 |
. . . . 5
⊢ ((x ∈ A → x ∈ Fin ) ↔ ∃y ∈ Nn (x ∈ A → x ∈ y)) |
12 | 11 | albii 1566 |
. . . 4
⊢ (∀x(x ∈ A → x ∈ Fin ) ↔ ∀x∃y ∈ Nn (x ∈ A → x ∈ y)) |
13 | 4, 12 | bitri 240 |
. . 3
⊢ (A ⊆ Fin ↔ ∀x∃y ∈ Nn (x ∈ A →
x ∈
y)) |
14 | | nulnnc 6119 |
. . . . . . 7
⊢ ¬ ∅ ∈ NC |
15 | | eleq1 2413 |
. . . . . . 7
⊢ (A = ∅ →
(A ∈
NC ↔ ∅
∈ NC
)) |
16 | 14, 15 | mtbiri 294 |
. . . . . 6
⊢ (A = ∅ →
¬ A ∈
NC ) |
17 | 16 | necon2ai 2562 |
. . . . 5
⊢ (A ∈ NC → A ≠
∅) |
18 | | n0 3560 |
. . . . 5
⊢ (A ≠ ∅ ↔
∃x
x ∈
A) |
19 | 17, 18 | sylib 188 |
. . . 4
⊢ (A ∈ NC → ∃x x ∈ A) |
20 | | 19.29r 1597 |
. . . . 5
⊢ ((∃x x ∈ A ∧ ∀x∃y ∈ Nn (x ∈ A → x ∈ y)) →
∃x(x ∈ A ∧ ∃y ∈ Nn (x ∈ A →
x ∈
y))) |
21 | | pm2.27 35 |
. . . . . . . . . . 11
⊢ (x ∈ A → ((x
∈ A
→ x ∈ y) →
x ∈
y)) |
22 | 21 | adantl 452 |
. . . . . . . . . 10
⊢ (((A ∈ NC ∧ y ∈ Nn ) ∧ x ∈ A) → ((x
∈ A
→ x ∈ y) →
x ∈
y)) |
23 | | nnnc 6147 |
. . . . . . . . . . . . 13
⊢ (y ∈ Nn → y ∈ NC
) |
24 | | nceleq 6150 |
. . . . . . . . . . . . 13
⊢ (((A ∈ NC ∧ y ∈ NC ) ∧ (x ∈ A ∧ x ∈ y)) → A =
y) |
25 | 23, 24 | sylanl2 632 |
. . . . . . . . . . . 12
⊢ (((A ∈ NC ∧ y ∈ Nn ) ∧ (x ∈ A ∧ x ∈ y)) → A =
y) |
26 | | simplr 731 |
. . . . . . . . . . . 12
⊢ (((A ∈ NC ∧ y ∈ Nn ) ∧ (x ∈ A ∧ x ∈ y)) → y
∈ Nn
) |
27 | 25, 26 | eqeltrd 2427 |
. . . . . . . . . . 11
⊢ (((A ∈ NC ∧ y ∈ Nn ) ∧ (x ∈ A ∧ x ∈ y)) → A
∈ Nn
) |
28 | 27 | expr 598 |
. . . . . . . . . 10
⊢ (((A ∈ NC ∧ y ∈ Nn ) ∧ x ∈ A) → (x
∈ y
→ A ∈ Nn
)) |
29 | 22, 28 | syld 40 |
. . . . . . . . 9
⊢ (((A ∈ NC ∧ y ∈ Nn ) ∧ x ∈ A) → ((x
∈ A
→ x ∈ y) →
A ∈ Nn )) |
30 | 29 | an32s 779 |
. . . . . . . 8
⊢ (((A ∈ NC ∧ x ∈ A) ∧ y ∈ Nn ) → ((x
∈ A
→ x ∈ y) →
A ∈ Nn )) |
31 | 30 | rexlimdva 2739 |
. . . . . . 7
⊢ ((A ∈ NC ∧ x ∈ A) → (∃y ∈ Nn (x ∈ A → x ∈ y) →
A ∈ Nn )) |
32 | 31 | expimpd 586 |
. . . . . 6
⊢ (A ∈ NC → ((x ∈ A ∧ ∃y ∈ Nn (x ∈ A →
x ∈
y)) → A ∈ Nn )) |
33 | 32 | exlimdv 1636 |
. . . . 5
⊢ (A ∈ NC → (∃x(x ∈ A ∧ ∃y ∈ Nn (x ∈ A →
x ∈
y)) → A ∈ Nn )) |
34 | 20, 33 | syl5 28 |
. . . 4
⊢ (A ∈ NC → ((∃x x ∈ A ∧ ∀x∃y ∈ Nn (x ∈ A →
x ∈
y)) → A ∈ Nn )) |
35 | 19, 34 | mpand 656 |
. . 3
⊢ (A ∈ NC → (∀x∃y ∈ Nn (x ∈ A →
x ∈
y) → A ∈ Nn )) |
36 | 13, 35 | syl5bi 208 |
. 2
⊢ (A ∈ NC → (A ⊆ Fin → A ∈ Nn )) |
37 | 3, 36 | impbid2 195 |
1
⊢ (A ∈ NC → (A ∈ Nn ↔ A ⊆ Fin )) |