Step | Hyp | Ref
| Expression |
1 | | fveq2 5329 |
. . . 4
⊢ (x = A → (
FullFun F
‘x) = ( FullFun F
‘A)) |
2 | | fveq2 5329 |
. . . 4
⊢ (x = A →
(F ‘x) = (F
‘A)) |
3 | 1, 2 | eqeq12d 2367 |
. . 3
⊢ (x = A → ((
FullFun F
‘x) = (F ‘x)
↔ ( FullFun F ‘A) =
(F ‘A))) |
4 | | df-fullfun 5769 |
. . . . 5
⊢ FullFun F = ((( I
∘ F)
∖ ( ∼ I ∘ F)) ∪ (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) |
5 | 4 | fveq1i 5330 |
. . . 4
⊢ ( FullFun F
‘x) = (((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) ‘x) |
6 | | incompl 4074 |
. . . . . . 7
⊢ (dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∩ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) = ∅ |
7 | | fnfullfunlem2 5858 |
. . . . . . . . 9
⊢ Fun (( I ∘ F) ∖ ( ∼ I ∘
F)) |
8 | | funfn 5137 |
. . . . . . . . 9
⊢ (Fun (( I ∘ F) ∖ ( ∼ I ∘
F)) ↔ (( I ∘ F) ∖ ( ∼ I ∘
F)) Fn dom (( I ∘ F) ∖ ( ∼ I ∘
F))) |
9 | 7, 8 | mpbi 199 |
. . . . . . . 8
⊢ (( I ∘ F) ∖ ( ∼ I ∘
F)) Fn dom (( I ∘ F) ∖ ( ∼ I ∘
F)) |
10 | | 0ex 4111 |
. . . . . . . . 9
⊢ ∅ ∈
V |
11 | | fnconstg 5253 |
. . . . . . . . 9
⊢ (∅ ∈ V → (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) Fn ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . 8
⊢ ( ∼ dom (( I
∘ F)
∖ ( ∼ I ∘ F)) ×
{∅}) Fn ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) |
13 | | fvun1 5380 |
. . . . . . . 8
⊢ (((( I ∘ F) ∖ ( ∼ I ∘
F)) Fn dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∧ (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) Fn ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∧
((dom (( I ∘ F) ∖ ( ∼ I
∘ F))
∩ ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))) =
∅ ∧
x ∈ dom
(( I ∘ F) ∖ ( ∼ I
∘ F))))
→ (((( I ∘ F) ∖ ( ∼ I
∘ F))
∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) ‘x) = ((( I ∘
F) ∖ (
∼ I ∘ F)) ‘x)) |
14 | 9, 12, 13 | mp3an12 1267 |
. . . . . . 7
⊢ (((dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∩ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) = ∅
∧ x ∈ dom (( I ∘
F) ∖ (
∼ I ∘ F))) → (((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) ‘x)
= ((( I ∘ F) ∖ ( ∼ I
∘ F))
‘x)) |
15 | 6, 14 | mpan 651 |
. . . . . 6
⊢ (x ∈ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) → (((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) ‘x)
= ((( I ∘ F) ∖ ( ∼ I
∘ F))
‘x)) |
16 | | fvfullfunlem3 5864 |
. . . . . 6
⊢ (x ∈ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) → ((( I ∘ F) ∖ ( ∼ I ∘
F)) ‘x) = (F
‘x)) |
17 | 15, 16 | eqtrd 2385 |
. . . . 5
⊢ (x ∈ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) → (((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) ‘x)
= (F ‘x)) |
18 | | vex 2863 |
. . . . . . . 8
⊢ x ∈
V |
19 | 18 | elcompl 3226 |
. . . . . . 7
⊢ (x ∈ ∼ dom (( I
∘ F)
∖ ( ∼ I ∘ F)) ↔
¬ x ∈
dom (( I ∘ F) ∖ ( ∼ I
∘ F))) |
20 | | fvun2 5381 |
. . . . . . . . 9
⊢ (((( I ∘ F) ∖ ( ∼ I ∘
F)) Fn dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∧ (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) Fn ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∧
((dom (( I ∘ F) ∖ ( ∼ I
∘ F))
∩ ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))) =
∅ ∧
x ∈ ∼
dom (( I ∘ F) ∖ ( ∼ I
∘ F))))
→ (((( I ∘ F) ∖ ( ∼ I
∘ F))
∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) ‘x) = (( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅}) ‘x)) |
21 | 9, 12, 20 | mp3an12 1267 |
. . . . . . . 8
⊢ (((dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∩ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) = ∅
∧ x ∈ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) → (((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) ‘x)
= (( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) ‘x)) |
22 | 6, 21 | mpan 651 |
. . . . . . 7
⊢ (x ∈ ∼ dom (( I
∘ F)
∖ ( ∼ I ∘ F)) →
(((( I ∘ F) ∖ ( ∼ I
∘ F))
∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) ‘x) = (( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅}) ‘x)) |
23 | 19, 22 | sylbir 204 |
. . . . . 6
⊢ (¬ x ∈ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) → (((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) ‘x)
= (( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) ‘x)) |
24 | | fvfullfunlem1 5862 |
. . . . . . . . 9
⊢ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) = {x ∣ ∃!y xFy} |
25 | 24 | abeq2i 2461 |
. . . . . . . 8
⊢ (x ∈ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ↔ ∃!y xFy) |
26 | | tz6.12-2 5347 |
. . . . . . . 8
⊢ (¬ ∃!y xFy → (F
‘x) = ∅) |
27 | 25, 26 | sylnbi 297 |
. . . . . . 7
⊢ (¬ x ∈ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) → (F ‘x) =
∅) |
28 | 10 | fvconst2 5454 |
. . . . . . . 8
⊢ (x ∈ ∼ dom (( I
∘ F)
∖ ( ∼ I ∘ F)) →
(( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) ‘x) = ∅) |
29 | 19, 28 | sylbir 204 |
. . . . . . 7
⊢ (¬ x ∈ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) → (( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅}) ‘x)
= ∅) |
30 | 27, 29 | eqtr4d 2388 |
. . . . . 6
⊢ (¬ x ∈ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) → (F ‘x) = ((
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) ‘x)) |
31 | 23, 30 | eqtr4d 2388 |
. . . . 5
⊢ (¬ x ∈ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) → (((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) ‘x)
= (F ‘x)) |
32 | 17, 31 | pm2.61i 156 |
. . . 4
⊢ (((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) ‘x)
= (F ‘x) |
33 | 5, 32 | eqtri 2373 |
. . 3
⊢ ( FullFun F
‘x) = (F ‘x) |
34 | 3, 33 | vtoclg 2915 |
. 2
⊢ (A ∈ V → (
FullFun F
‘A) = (F ‘A)) |
35 | | fvprc 5326 |
. . 3
⊢ (¬ A ∈ V → (
FullFun F
‘A) = ∅) |
36 | | fvprc 5326 |
. . 3
⊢ (¬ A ∈ V →
(F ‘A) = ∅) |
37 | 35, 36 | eqtr4d 2388 |
. 2
⊢ (¬ A ∈ V → (
FullFun F
‘A) = (F ‘A)) |
38 | 34, 37 | pm2.61i 156 |
1
⊢ ( FullFun F
‘A) = (F ‘A) |