NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fvfullfun GIF version

Theorem fvfullfun 5865
Description: The value of the full function definition agrees with the function value everywhere. (Contributed by SF, 9-Mar-2015.)
Assertion
Ref Expression
fvfullfun ( FullFun FA) = (FA)

Proof of Theorem fvfullfun
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5329 . . . 4 (x = A → ( FullFun Fx) = ( FullFun FA))
2 fveq2 5329 . . . 4 (x = A → (Fx) = (FA))
31, 2eqeq12d 2367 . . 3 (x = A → (( FullFun Fx) = (Fx) ↔ ( FullFun FA) = (FA)))
4 df-fullfun 5769 . . . . 5 FullFun F = ((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {}))
54fveq1i 5330 . . . 4 ( FullFun Fx) = (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x)
6 incompl 4074 . . . . . . 7 (dom (( I F) ( ∼ I F)) ∩ ∼ dom (( I F) ( ∼ I F))) =
7 fnfullfunlem2 5858 . . . . . . . . 9 Fun (( I F) ( ∼ I F))
8 funfn 5137 . . . . . . . . 9 (Fun (( I F) ( ∼ I F)) ↔ (( I F) ( ∼ I F)) Fn dom (( I F) ( ∼ I F)))
97, 8mpbi 199 . . . . . . . 8 (( I F) ( ∼ I F)) Fn dom (( I F) ( ∼ I F))
10 0ex 4111 . . . . . . . . 9 V
11 fnconstg 5253 . . . . . . . . 9 ( V → ( ∼ dom (( I F) ( ∼ I F)) × {}) Fn ∼ dom (( I F) ( ∼ I F)))
1210, 11ax-mp 5 . . . . . . . 8 ( ∼ dom (( I F) ( ∼ I F)) × {}) Fn ∼ dom (( I F) ( ∼ I F))
13 fvun1 5380 . . . . . . . 8 (((( I F) ( ∼ I F)) Fn dom (( I F) ( ∼ I F)) ( ∼ dom (( I F) ( ∼ I F)) × {}) Fn ∼ dom (( I F) ( ∼ I F)) ((dom (( I F) ( ∼ I F)) ∩ ∼ dom (( I F) ( ∼ I F))) = x dom (( I F) ( ∼ I F)))) → (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = ((( I F) ( ∼ I F)) ‘x))
149, 12, 13mp3an12 1267 . . . . . . 7 (((dom (( I F) ( ∼ I F)) ∩ ∼ dom (( I F) ( ∼ I F))) = x dom (( I F) ( ∼ I F))) → (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = ((( I F) ( ∼ I F)) ‘x))
156, 14mpan 651 . . . . . 6 (x dom (( I F) ( ∼ I F)) → (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = ((( I F) ( ∼ I F)) ‘x))
16 fvfullfunlem3 5864 . . . . . 6 (x dom (( I F) ( ∼ I F)) → ((( I F) ( ∼ I F)) ‘x) = (Fx))
1715, 16eqtrd 2385 . . . . 5 (x dom (( I F) ( ∼ I F)) → (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = (Fx))
18 vex 2863 . . . . . . . 8 x V
1918elcompl 3226 . . . . . . 7 (x ∼ dom (( I F) ( ∼ I F)) ↔ ¬ x dom (( I F) ( ∼ I F)))
20 fvun2 5381 . . . . . . . . 9 (((( I F) ( ∼ I F)) Fn dom (( I F) ( ∼ I F)) ( ∼ dom (( I F) ( ∼ I F)) × {}) Fn ∼ dom (( I F) ( ∼ I F)) ((dom (( I F) ( ∼ I F)) ∩ ∼ dom (( I F) ( ∼ I F))) = x ∼ dom (( I F) ( ∼ I F)))) → (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = (( ∼ dom (( I F) ( ∼ I F)) × {}) ‘x))
219, 12, 20mp3an12 1267 . . . . . . . 8 (((dom (( I F) ( ∼ I F)) ∩ ∼ dom (( I F) ( ∼ I F))) = x ∼ dom (( I F) ( ∼ I F))) → (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = (( ∼ dom (( I F) ( ∼ I F)) × {}) ‘x))
226, 21mpan 651 . . . . . . 7 (x ∼ dom (( I F) ( ∼ I F)) → (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = (( ∼ dom (( I F) ( ∼ I F)) × {}) ‘x))
2319, 22sylbir 204 . . . . . 6 x dom (( I F) ( ∼ I F)) → (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = (( ∼ dom (( I F) ( ∼ I F)) × {}) ‘x))
24 fvfullfunlem1 5862 . . . . . . . . 9 dom (( I F) ( ∼ I F)) = {x ∃!y xFy}
2524abeq2i 2461 . . . . . . . 8 (x dom (( I F) ( ∼ I F)) ↔ ∃!y xFy)
26 tz6.12-2 5347 . . . . . . . 8 ∃!y xFy → (Fx) = )
2725, 26sylnbi 297 . . . . . . 7 x dom (( I F) ( ∼ I F)) → (Fx) = )
2810fvconst2 5454 . . . . . . . 8 (x ∼ dom (( I F) ( ∼ I F)) → (( ∼ dom (( I F) ( ∼ I F)) × {}) ‘x) = )
2919, 28sylbir 204 . . . . . . 7 x dom (( I F) ( ∼ I F)) → (( ∼ dom (( I F) ( ∼ I F)) × {}) ‘x) = )
3027, 29eqtr4d 2388 . . . . . 6 x dom (( I F) ( ∼ I F)) → (Fx) = (( ∼ dom (( I F) ( ∼ I F)) × {}) ‘x))
3123, 30eqtr4d 2388 . . . . 5 x dom (( I F) ( ∼ I F)) → (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = (Fx))
3217, 31pm2.61i 156 . . . 4 (((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {})) ‘x) = (Fx)
335, 32eqtri 2373 . . 3 ( FullFun Fx) = (Fx)
343, 33vtoclg 2915 . 2 (A V → ( FullFun FA) = (FA))
35 fvprc 5326 . . 3 A V → ( FullFun FA) = )
36 fvprc 5326 . . 3 A V → (FA) = )
3735, 36eqtr4d 2388 . 2 A V → ( FullFun FA) = (FA))
3834, 37pm2.61i 156 1 ( FullFun FA) = (FA)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wa 358   = wceq 1642   wcel 1710  ∃!weu 2204  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209  c0 3551  {csn 3738   class class class wbr 4640   ccom 4722   I cid 4764   × cxp 4771  dom cdm 4773  Fun wfun 4776   Fn wfn 4777  cfv 4782   FullFun cfullfun 5768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fv 4796  df-fullfun 5769
This theorem is referenced by:  brfullfung  5866
  Copyright terms: Public domain W3C validator