Step | Hyp | Ref
| Expression |
1 | | df-eu 2208 |
. 2
⊢ (∃!xφ ↔ ∃z∀x(φ ↔ x = z)) |
2 | | dfiota2 4341 |
. . 3
⊢ (℩xφ) = ∪{z ∣ ∀x(φ ↔
x = z)} |
3 | | alnex 1543 |
. . . . . 6
⊢ (∀z ¬
∀x(φ ↔
x = z)
↔ ¬ ∃z∀x(φ ↔
x = z)) |
4 | | ax-1 6 |
. . . . . . . . . . 11
⊢ (¬ ∀x(φ ↔ x = z) →
(z = z
→ ¬ ∀x(φ ↔
x = z))) |
5 | | eqidd 2354 |
. . . . . . . . . . 11
⊢ (¬ ∀x(φ ↔ x = z) →
z = z) |
6 | 4, 5 | impbid1 194 |
. . . . . . . . . 10
⊢ (¬ ∀x(φ ↔ x = z) →
(z = z
↔ ¬ ∀x(φ ↔
x = z))) |
7 | 6 | con2bid 319 |
. . . . . . . . 9
⊢ (¬ ∀x(φ ↔ x = z) →
(∀x(φ ↔
x = z)
↔ ¬ z = z)) |
8 | 7 | alimi 1559 |
. . . . . . . 8
⊢ (∀z ¬
∀x(φ ↔
x = z)
→ ∀z(∀x(φ ↔
x = z)
↔ ¬ z = z)) |
9 | | abbi 2464 |
. . . . . . . 8
⊢ (∀z(∀x(φ ↔ x = z) ↔
¬ z = z) ↔ {z
∣ ∀x(φ ↔ x = z)} =
{z ∣
¬ z = z}) |
10 | 8, 9 | sylib 188 |
. . . . . . 7
⊢ (∀z ¬
∀x(φ ↔
x = z)
→ {z ∣ ∀x(φ ↔
x = z)}
= {z ∣
¬ z = z}) |
11 | | dfnul2 3553 |
. . . . . . 7
⊢ ∅ = {z ∣ ¬ z =
z} |
12 | 10, 11 | syl6eqr 2403 |
. . . . . 6
⊢ (∀z ¬
∀x(φ ↔
x = z)
→ {z ∣ ∀x(φ ↔
x = z)}
= ∅) |
13 | 3, 12 | sylbir 204 |
. . . . 5
⊢ (¬ ∃z∀x(φ ↔ x = z) →
{z ∣
∀x(φ ↔
x = z)}
= ∅) |
14 | 13 | unieqd 3903 |
. . . 4
⊢ (¬ ∃z∀x(φ ↔ x = z) →
∪{z ∣ ∀x(φ ↔
x = z)}
= ∪∅) |
15 | | uni0 3919 |
. . . 4
⊢ ∪∅ = ∅ |
16 | 14, 15 | syl6eq 2401 |
. . 3
⊢ (¬ ∃z∀x(φ ↔ x = z) →
∪{z ∣ ∀x(φ ↔
x = z)}
= ∅) |
17 | 2, 16 | syl5eq 2397 |
. 2
⊢ (¬ ∃z∀x(φ ↔ x = z) →
(℩xφ) = ∅) |
18 | 1, 17 | sylnbi 297 |
1
⊢ (¬ ∃!xφ → (℩xφ) = ∅) |