NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.43i GIF version

Theorem pm2.43i 43
Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
pm2.43i.1 (φ → (φψ))
Assertion
Ref Expression
pm2.43i (φψ)

Proof of Theorem pm2.43i
StepHypRef Expression
1 id 19 . 2 (φφ)
2 pm2.43i.1 . 2 (φ → (φψ))
31, 2mpd 14 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  sylc  56  pm2.18  102  impbid  183  ibi  232  anidms  626  tbw-bijust  1463  tbw-negdf  1464  equid  1676  equidOLD  1677  hbae  1953  aecom-o  2151  hbae-o  2153  hbequid  2160  equidqe  2173  equid1ALT  2176  ax10from10o  2177  ax11inda  2200  vtoclgaf  2919  vtocl2gaf  2921  vtocl3gaf  2923  elinti  3935  spfinsfincl  4539  copsexg  4607
  Copyright terms: Public domain W3C validator