New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > notbid | GIF version |
Description: Deduction negating both sides of a logical equivalence. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
notbid.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
notbid | ⊢ (φ → (¬ ψ ↔ ¬ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbid.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | notnot 282 | . . 3 ⊢ (ψ ↔ ¬ ¬ ψ) | |
3 | notnot 282 | . . 3 ⊢ (χ ↔ ¬ ¬ χ) | |
4 | 1, 2, 3 | 3bitr3g 278 | . 2 ⊢ (φ → (¬ ¬ ψ ↔ ¬ ¬ χ)) |
5 | 4 | con4bid 284 | 1 ⊢ (φ → (¬ ψ ↔ ¬ χ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: notbi 286 con3th 924 nanbi1 1295 xorbi12d 1315 cbvexvw 1703 hba1w 1707 hbe1w 1708 ax10lem2 1937 ax9 1949 equsex 1962 drex1 1967 cbvex 1985 cbvexd 2009 ax11inda 2200 eujustALT 2207 2mo 2282 neeq1 2525 neeq2 2526 necon3abid 2550 neleq1 2608 neleq2 2609 cbvrexf 2831 gencbval 2904 spcegf 2936 spc2gv 2943 spc3gv 2945 ru 3046 sbcng 3087 sbcrext 3120 sbcnel12g 3154 cbvrexcsf 3200 elin 3220 dfpss3 3356 disjne 3597 pssdifcom1 3636 pssdifcom2 3637 pw1disj 4168 opkelimagekg 4272 dfimak2 4299 nnsucelr 4429 tfinltfin 4502 tfinlefin 4503 evenodddisjlem1 4516 evenodddisj 4517 nnadjoin 4521 nnadjoinpw 4522 tfinnn 4535 nulnnn 4557 rexiunxp 4825 intirr 5030 fvun1 5380 fvmpti 5700 enadjlem1 6060 enadj 6061 nenpw1pwlem2 6086 nnc3n3p1 6279 nchoicelem1 6290 nchoicelem2 6291 nchoicelem8 6297 nchoicelem11 6300 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |