New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > had0 | GIF version |
Description: If the first parameter is false, the half adder is equivalent to the XOR of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
had0 | ⊢ (¬ φ → (hadd(φ, ψ, χ) ↔ (ψ ⊻ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | had1 1402 | . . 3 ⊢ (¬ φ → (hadd(¬ φ, ¬ ψ, ¬ χ) ↔ (¬ ψ ↔ ¬ χ))) | |
2 | hadnot 1393 | . . 3 ⊢ (¬ hadd(φ, ψ, χ) ↔ hadd(¬ φ, ¬ ψ, ¬ χ)) | |
3 | df-xor 1305 | . . . . 5 ⊢ ((¬ ψ ⊻ ¬ χ) ↔ ¬ (¬ ψ ↔ ¬ χ)) | |
4 | xorneg 1313 | . . . . 5 ⊢ ((¬ ψ ⊻ ¬ χ) ↔ (ψ ⊻ χ)) | |
5 | 3, 4 | bitr3i 242 | . . . 4 ⊢ (¬ (¬ ψ ↔ ¬ χ) ↔ (ψ ⊻ χ)) |
6 | 5 | con1bii 321 | . . 3 ⊢ (¬ (ψ ⊻ χ) ↔ (¬ ψ ↔ ¬ χ)) |
7 | 1, 2, 6 | 3bitr4g 279 | . 2 ⊢ (¬ φ → (¬ hadd(φ, ψ, χ) ↔ ¬ (ψ ⊻ χ))) |
8 | 7 | con4bid 284 | 1 ⊢ (¬ φ → (hadd(φ, ψ, χ) ↔ (ψ ⊻ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ⊻ wxo 1304 haddwhad 1378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 df-had 1380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |