| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > xpeq2i | GIF version | ||
| Description: Equality inference for cross product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ A = B |
| Ref | Expression |
|---|---|
| xpeq2i | ⊢ (C × A) = (C × B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ A = B | |
| 2 | xpeq2 4800 | . 2 ⊢ (A = B → (C × A) = (C × B)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (C × A) = (C × B) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1642 × cxp 4771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-opab 4624 df-xp 4785 |
| This theorem is referenced by: xpindir 4866 |
| Copyright terms: Public domain | W3C validator |