NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-opab GIF version

Definition df-opab 4624
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually x and y are distinct, although the definition doesn't strictly require it (see dfid2 4770 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
df-opab {x, y φ} = {z xy(z = x, y φ)}
Distinct variable groups:   x,z   y,z   φ,z
Allowed substitution hints:   φ(x,y)

Detailed syntax breakdown of Definition df-opab
StepHypRef Expression
1 wph . . 3 wff φ
2 vx . . 3 setvar x
3 vy . . 3 setvar y
41, 2, 3copab 4623 . 2 class {x, y φ}
5 vz . . . . . . . 8 setvar z
65cv 1641 . . . . . . 7 class z
72cv 1641 . . . . . . . 8 class x
83cv 1641 . . . . . . . 8 class y
97, 8cop 4562 . . . . . . 7 class x, y
106, 9wceq 1642 . . . . . 6 wff z = x, y
1110, 1wa 358 . . . . 5 wff (z = x, y φ)
1211, 3wex 1541 . . . 4 wff y(z = x, y φ)
1312, 2wex 1541 . . 3 wff xy(z = x, y φ)
1413, 5cab 2339 . 2 class {z xy(z = x, y φ)}
154, 14wceq 1642 1 wff {x, y φ} = {z xy(z = x, y φ)}
Colors of variables: wff setvar class
This definition is referenced by:  opabbid  4625  nfopab  4628  nfopab1  4629  nfopab2  4630  cbvopab  4631  cbvopab1  4633  cbvopab2  4634  cbvopab1s  4635  cbvopab2v  4637  unopab  4639  opabid  4696  elopab  4697  ssopab2  4713  dfid3  4769  elxpi  4801  csbxpg  4814  rabxp  4815  iunfopab  5205  dfoprab2  5559  dmoprab  5575
  Copyright terms: Public domain W3C validator