![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > df-opab | GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually x and y are distinct, although the definition doesn't strictly require it (see dfid2 4769 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
df-opab | ⊢ {〈x, y〉 ∣ φ} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | vx | . . 3 setvar x | |
3 | vy | . . 3 setvar y | |
4 | 1, 2, 3 | copab 4622 | . 2 class {〈x, y〉 ∣ φ} |
5 | vz | . . . . . . . 8 setvar z | |
6 | 5 | cv 1641 | . . . . . . 7 class z |
7 | 2 | cv 1641 | . . . . . . . 8 class x |
8 | 3 | cv 1641 | . . . . . . . 8 class y |
9 | 7, 8 | cop 4561 | . . . . . . 7 class 〈x, y〉 |
10 | 6, 9 | wceq 1642 | . . . . . 6 wff z = 〈x, y〉 |
11 | 10, 1 | wa 358 | . . . . 5 wff (z = 〈x, y〉 ∧ φ) |
12 | 11, 3 | wex 1541 | . . . 4 wff ∃y(z = 〈x, y〉 ∧ φ) |
13 | 12, 2 | wex 1541 | . . 3 wff ∃x∃y(z = 〈x, y〉 ∧ φ) |
14 | 13, 5 | cab 2339 | . 2 class {z ∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} |
15 | 4, 14 | wceq 1642 | 1 wff {〈x, y〉 ∣ φ} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} |
Colors of variables: wff setvar class |
This definition is referenced by: opabbid 4624 nfopab 4627 nfopab1 4628 nfopab2 4629 cbvopab 4630 cbvopab1 4632 cbvopab2 4633 cbvopab1s 4634 cbvopab2v 4636 unopab 4638 opabid 4695 elopab 4696 ssopab2 4712 dfid3 4768 elxpi 4800 csbxpg 4813 rabxp 4814 iunfopab 5204 dfoprab2 5558 dmoprab 5574 |
Copyright terms: Public domain | W3C validator |