New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-opab | GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually x and y are distinct, although the definition doesn't strictly require it (see dfid2 4770 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
df-opab | ⊢ {〈x, y〉 ∣ φ} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | vx | . . 3 setvar x | |
3 | vy | . . 3 setvar y | |
4 | 1, 2, 3 | copab 4623 | . 2 class {〈x, y〉 ∣ φ} |
5 | vz | . . . . . . . 8 setvar z | |
6 | 5 | cv 1641 | . . . . . . 7 class z |
7 | 2 | cv 1641 | . . . . . . . 8 class x |
8 | 3 | cv 1641 | . . . . . . . 8 class y |
9 | 7, 8 | cop 4562 | . . . . . . 7 class 〈x, y〉 |
10 | 6, 9 | wceq 1642 | . . . . . 6 wff z = 〈x, y〉 |
11 | 10, 1 | wa 358 | . . . . 5 wff (z = 〈x, y〉 ∧ φ) |
12 | 11, 3 | wex 1541 | . . . 4 wff ∃y(z = 〈x, y〉 ∧ φ) |
13 | 12, 2 | wex 1541 | . . 3 wff ∃x∃y(z = 〈x, y〉 ∧ φ) |
14 | 13, 5 | cab 2339 | . 2 class {z ∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} |
15 | 4, 14 | wceq 1642 | 1 wff {〈x, y〉 ∣ φ} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} |
Colors of variables: wff setvar class |
This definition is referenced by: opabbid 4625 nfopab 4628 nfopab1 4629 nfopab2 4630 cbvopab 4631 cbvopab1 4633 cbvopab2 4634 cbvopab1s 4635 cbvopab2v 4637 unopab 4639 opabid 4696 elopab 4697 ssopab2 4713 dfid3 4769 elxpi 4801 csbxpg 4814 rabxp 4815 iunfopab 5205 dfoprab2 5559 dmoprab 5575 |
Copyright terms: Public domain | W3C validator |