 New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpeq1i GIF version

Theorem xpeq1i 4804
 Description: Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
xpeq1i.1 A = B
Assertion
Ref Expression
xpeq1i (A × C) = (B × C)

Proof of Theorem xpeq1i
StepHypRef Expression
1 xpeq1i.1 . 2 A = B
2 xpeq1 4798 . 2 (A = B → (A × C) = (B × C))
31, 2ax-mp 8 1 (A × C) = (B × C)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642   × cxp 4770 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-opab 4623  df-xp 4784 This theorem is referenced by:  iunxpconst  4819  xpindi  4864  resdmres  5078
 Copyright terms: Public domain W3C validator