![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > xpeq2 | GIF version |
Description: Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.) |
Ref | Expression |
---|---|
xpeq2 | ⊢ (A = B → (C × A) = (C × B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . . 4 ⊢ (A = B → (y ∈ A ↔ y ∈ B)) | |
2 | 1 | anbi2d 684 | . . 3 ⊢ (A = B → ((x ∈ C ∧ y ∈ A) ↔ (x ∈ C ∧ y ∈ B))) |
3 | 2 | opabbidv 4625 | . 2 ⊢ (A = B → {〈x, y〉 ∣ (x ∈ C ∧ y ∈ A)} = {〈x, y〉 ∣ (x ∈ C ∧ y ∈ B)}) |
4 | df-xp 4784 | . 2 ⊢ (C × A) = {〈x, y〉 ∣ (x ∈ C ∧ y ∈ A)} | |
5 | df-xp 4784 | . 2 ⊢ (C × B) = {〈x, y〉 ∣ (x ∈ C ∧ y ∈ B)} | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 ⊢ (A = B → (C × A) = (C × B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {copab 4622 × cxp 4770 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-opab 4623 df-xp 4784 |
This theorem is referenced by: xpeq12 4803 xpeq2i 4805 xpeq2d 4808 xpnz 5045 xpdisj2 5048 dmxpss 5052 rnxpid 5054 xpcan 5057 ovcross 5845 pmvalg 6010 xpcomeng 6053 |
Copyright terms: Public domain | W3C validator |