Proof of Theorem oa3-6lem
Step | Hyp | Ref
| Expression |
1 | | an1 106 |
. . . . . . . . 9
(a ∩ 1) = a |
2 | | 1i1 274 |
. . . . . . . . . . 11
(1 →1 c) = c |
3 | 2 | lan 77 |
. . . . . . . . . 10
((a →1 c) ∩ (1 →1 c)) = ((a
→1 c) ∩ c) |
4 | | u1lemab 610 |
. . . . . . . . . 10
((a →1 c) ∩ c) =
((a ∩ c) ∪ (a⊥ ∩ c)) |
5 | 3, 4 | ax-r2 36 |
. . . . . . . . 9
((a →1 c) ∩ (1 →1 c)) = ((a ∩
c) ∪ (a⊥ ∩ c)) |
6 | 1, 5 | 2or 72 |
. . . . . . . 8
((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) = (a ∪
((a ∩ c) ∪ (a⊥ ∩ c))) |
7 | | ax-a3 32 |
. . . . . . . . 9
((a ∪ (a ∩ c))
∪ (a⊥ ∩ c)) = (a ∪
((a ∩ c) ∪ (a⊥ ∩ c))) |
8 | 7 | ax-r1 35 |
. . . . . . . 8
(a ∪ ((a ∩ c) ∪
(a⊥ ∩ c))) = ((a ∪
(a ∩ c)) ∪ (a⊥ ∩ c)) |
9 | | orabs 120 |
. . . . . . . . 9
(a ∪ (a ∩ c)) =
a |
10 | 9 | ax-r5 38 |
. . . . . . . 8
((a ∪ (a ∩ c))
∪ (a⊥ ∩ c)) = (a ∪
(a⊥ ∩ c)) |
11 | 6, 8, 10 | 3tr 65 |
. . . . . . 7
((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) = (a ∪
(a⊥ ∩ c)) |
12 | | an1 106 |
. . . . . . . . 9
(b ∩ 1) = b |
13 | 2 | lan 77 |
. . . . . . . . . 10
((b →1 c) ∩ (1 →1 c)) = ((b
→1 c) ∩ c) |
14 | | u1lemab 610 |
. . . . . . . . . 10
((b →1 c) ∩ c) =
((b ∩ c) ∪ (b⊥ ∩ c)) |
15 | 13, 14 | ax-r2 36 |
. . . . . . . . 9
((b →1 c) ∩ (1 →1 c)) = ((b ∩
c) ∪ (b⊥ ∩ c)) |
16 | 12, 15 | 2or 72 |
. . . . . . . 8
((b ∩ 1) ∪ ((b →1 c) ∩ (1 →1 c))) = (b ∪
((b ∩ c) ∪ (b⊥ ∩ c))) |
17 | | ax-a3 32 |
. . . . . . . . 9
((b ∪ (b ∩ c))
∪ (b⊥ ∩ c)) = (b ∪
((b ∩ c) ∪ (b⊥ ∩ c))) |
18 | 17 | ax-r1 35 |
. . . . . . . 8
(b ∪ ((b ∩ c) ∪
(b⊥ ∩ c))) = ((b ∪
(b ∩ c)) ∪ (b⊥ ∩ c)) |
19 | | orabs 120 |
. . . . . . . . 9
(b ∪ (b ∩ c)) =
b |
20 | 19 | ax-r5 38 |
. . . . . . . 8
((b ∪ (b ∩ c))
∪ (b⊥ ∩ c)) = (b ∪
(b⊥ ∩ c)) |
21 | 16, 18, 20 | 3tr 65 |
. . . . . . 7
((b ∩ 1) ∪ ((b →1 c) ∩ (1 →1 c))) = (b ∪
(b⊥ ∩ c)) |
22 | 11, 21 | 2an 79 |
. . . . . 6
(((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) ∩ ((b
∩ 1) ∪ ((b →1
c) ∩ (1 →1
c)))) = ((a ∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c))) |
23 | 22 | lor 70 |
. . . . 5
(((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))) ∪ (((a
∩ 1) ∪ ((a →1
c) ∩ (1 →1
c))) ∩ ((b ∩ 1) ∪ ((b →1 c) ∩ (1 →1 c))))) = (((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c))) ∪ ((a ∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c)))) |
24 | | or32 82 |
. . . . 5
(((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))) ∪ ((a
∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c)))) = (((a
∩ b) ∪ ((a ∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c)))) ∪ ((a
→1 c) ∩ (b →1 c))) |
25 | | leo 158 |
. . . . . . . . 9
a ≤ (a ∪ (a⊥ ∩ c)) |
26 | | leo 158 |
. . . . . . . . 9
b ≤ (b ∪ (b⊥ ∩ c)) |
27 | 25, 26 | le2an 169 |
. . . . . . . 8
(a ∩ b) ≤ ((a
∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c))) |
28 | 27 | df-le2 131 |
. . . . . . 7
((a ∩ b) ∪ ((a
∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c)))) = ((a
∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c))) |
29 | | ax-a1 30 |
. . . . . . . . . 10
a = a⊥
⊥ |
30 | 29 | ax-r5 38 |
. . . . . . . . 9
(a ∪ (a⊥ ∩ c)) = (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
31 | | df-i1 44 |
. . . . . . . . . 10
(a⊥ →1
c) = (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
32 | 31 | ax-r1 35 |
. . . . . . . . 9
(a⊥
⊥ ∪ (a⊥ ∩ c)) = (a⊥ →1 c) |
33 | 30, 32 | ax-r2 36 |
. . . . . . . 8
(a ∪ (a⊥ ∩ c)) = (a⊥ →1 c) |
34 | | ax-a1 30 |
. . . . . . . . . 10
b = b⊥
⊥ |
35 | 34 | ax-r5 38 |
. . . . . . . . 9
(b ∪ (b⊥ ∩ c)) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
36 | | df-i1 44 |
. . . . . . . . . 10
(b⊥ →1
c) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
37 | 36 | ax-r1 35 |
. . . . . . . . 9
(b⊥
⊥ ∪ (b⊥ ∩ c)) = (b⊥ →1 c) |
38 | 35, 37 | ax-r2 36 |
. . . . . . . 8
(b ∪ (b⊥ ∩ c)) = (b⊥ →1 c) |
39 | 33, 38 | 2an 79 |
. . . . . . 7
((a ∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c))) = ((a⊥ →1 c) ∩ (b⊥ →1 c)) |
40 | 28, 39 | ax-r2 36 |
. . . . . 6
((a ∩ b) ∪ ((a
∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c)))) = ((a⊥ →1 c) ∩ (b⊥ →1 c)) |
41 | 40 | ax-r5 38 |
. . . . 5
(((a ∩ b) ∪ ((a
∪ (a⊥ ∩ c)) ∩ (b
∪ (b⊥ ∩ c)))) ∪ ((a
→1 c) ∩ (b →1 c))) = (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) |
42 | 23, 24, 41 | 3tr 65 |
. . . 4
(((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))) ∪ (((a
∩ 1) ∪ ((a →1
c) ∩ (1 →1
c))) ∩ ((b ∩ 1) ∪ ((b →1 c) ∩ (1 →1 c))))) = (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) |
43 | 42 | lan 77 |
. . 3
(b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) ∩ ((b
∩ 1) ∪ ((b →1
c) ∩ (1 →1
c)))))) = (b ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))) |
44 | 43 | lor 70 |
. 2
(a ∪ (b ∩ (((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) ∩ ((b
∩ 1) ∪ ((b →1
c) ∩ (1 →1
c))))))) = (a ∪ (b ∩
(((a⊥ →1
c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))))) |
45 | 44 | lan 77 |
1
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) ∩ ((b
∩ 1) ∪ ((b →1
c) ∩ (1 →1
c)))))))) = ((a →1 c) ∩ (a
∪ (b ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))) |