Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > 1oai1 | GIF version |
Description: Orthoarguesian-like OM law. (Contributed by NM, 30-Dec-1998.) |
Ref | Expression |
---|---|
1oai1 | ((a →1 c) ∩ ((a ∩ b)⊥ →1 ((a →1 c) ∩ (b →1 c)))) ≤ (b →1 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oa 820 | . 2 ((c⊥ →2 a⊥ ) ∩ ((a⊥ ∪ b⊥ ) →1 ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )))) ≤ (c⊥ →2 b⊥ ) | |
2 | i1i2 266 | . . 3 (a →1 c) = (c⊥ →2 a⊥ ) | |
3 | oran3 93 | . . . . 5 (a⊥ ∪ b⊥ ) = (a ∩ b)⊥ | |
4 | 3 | ax-r1 35 | . . . 4 (a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
5 | i1i2 266 | . . . . 5 (b →1 c) = (c⊥ →2 b⊥ ) | |
6 | 2, 5 | 2an 79 | . . . 4 ((a →1 c) ∩ (b →1 c)) = ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )) |
7 | 4, 6 | ud1lem0ab 257 | . . 3 ((a ∩ b)⊥ →1 ((a →1 c) ∩ (b →1 c))) = ((a⊥ ∪ b⊥ ) →1 ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ ))) |
8 | 2, 7 | 2an 79 | . 2 ((a →1 c) ∩ ((a ∩ b)⊥ →1 ((a →1 c) ∩ (b →1 c)))) = ((c⊥ →2 a⊥ ) ∩ ((a⊥ ∪ b⊥ ) →1 ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )))) |
9 | 1, 8, 5 | le3tr1 140 | 1 ((a →1 c) ∩ ((a ∩ b)⊥ →1 ((a →1 c) ∩ (b →1 c)))) ≤ (b →1 c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: 2oai1u 822 d3oa 995 |
Copyright terms: Public domain | W3C validator |