Proof of Theorem 1oa
| Step | Hyp | Ref
| Expression |
| 1 | | lear 161 |
. . 3
((((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ )))) ∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ )))) ≤ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ ))) |
| 2 | | an12 81 |
. . . . 5
(a⊥ ∩ (b⊥ ∩ c⊥ )) = (b⊥ ∩ (a⊥ ∩ c⊥ )) |
| 3 | | lear 161 |
. . . . . 6
(b⊥ ∩ (a⊥ ∩ c⊥ )) ≤ (a⊥ ∩ c⊥ ) |
| 4 | 3 | lerr 150 |
. . . . 5
(b⊥ ∩ (a⊥ ∩ c⊥ )) ≤ (c ∪ (a⊥ ∩ c⊥ )) |
| 5 | 2, 4 | bltr 138 |
. . . 4
(a⊥ ∩ (b⊥ ∩ c⊥ )) ≤ (c ∪ (a⊥ ∩ c⊥ )) |
| 6 | | leid 148 |
. . . 4
(c ∪ (a⊥ ∩ c⊥ )) ≤ (c ∪ (a⊥ ∩ c⊥ )) |
| 7 | 5, 6 | lel2or 170 |
. . 3
((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ ))) ≤ (c ∪ (a⊥ ∩ c⊥ )) |
| 8 | 1, 7 | letr 137 |
. 2
((((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ )))) ∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ )))) ≤ (c ∪ (a⊥ ∩ c⊥ )) |
| 9 | | df-i1 44 |
. . . 4
((b ∪ c) →1 ((a →2 b) ∩ (a
→2 c))) = ((b ∪ c)⊥ ∪ ((b ∪ c) ∩
((a →2 b) ∩ (a
→2 c)))) |
| 10 | 9 | lan 77 |
. . 3
((a →2 b) ∩ ((b
∪ c) →1 ((a →2 b) ∩ (a
→2 c)))) = ((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((b ∪ c) ∩
((a →2 b) ∩ (a
→2 c))))) |
| 11 | | an12 81 |
. . . . . 6
((a →2 b) ∩ ((b
∪ c) ∩ (a →2 c))) = ((b ∪
c) ∩ ((a →2 b) ∩ (a
→2 c))) |
| 12 | 11 | ax-r1 35 |
. . . . 5
((b ∪ c) ∩ ((a
→2 b) ∩ (a →2 c))) = ((a
→2 b) ∩ ((b ∪ c) ∩
(a →2 c))) |
| 13 | | coman1 185 |
. . . . 5
((a →2 b) ∩ ((b
∪ c) ∩ (a →2 c))) C (a
→2 b) |
| 14 | 12, 13 | bctr 181 |
. . . 4
((b ∪ c) ∩ ((a
→2 b) ∩ (a →2 c))) C (a
→2 b) |
| 15 | | coman1 185 |
. . . . 5
((b ∪ c) ∩ ((a
→2 b) ∩ (a →2 c))) C (b
∪ c) |
| 16 | 15 | comcom2 183 |
. . . 4
((b ∪ c) ∩ ((a
→2 b) ∩ (a →2 c))) C (b
∪ c)⊥ |
| 17 | 14, 16 | fh2c 477 |
. . 3
((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((b ∪ c) ∩
((a →2 b) ∩ (a
→2 c))))) = (((a →2 b) ∩ (b
∪ c)⊥ ) ∪
((a →2 b) ∩ ((b
∪ c) ∩ ((a →2 b) ∩ (a
→2 c))))) |
| 18 | | df-i2 45 |
. . . . . . 7
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 19 | | anor3 90 |
. . . . . . . 8
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
| 20 | 19 | ax-r1 35 |
. . . . . . 7
(b ∪ c)⊥ = (b⊥ ∩ c⊥ ) |
| 21 | 18, 20 | 2an 79 |
. . . . . 6
((a →2 b) ∩ (b
∪ c)⊥ ) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ c⊥ )) |
| 22 | | comid 187 |
. . . . . . . . . . 11
b C b |
| 23 | 22 | comcom3 454 |
. . . . . . . . . 10
b⊥ C
b |
| 24 | | comanr2 465 |
. . . . . . . . . 10
b⊥ C
(a⊥ ∩ b⊥ ) |
| 25 | 23, 24 | fh1r 473 |
. . . . . . . . 9
((b ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) = ((b ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) |
| 26 | | dff 101 |
. . . . . . . . . . 11
0 = (b ∩ b⊥ ) |
| 27 | 26 | ax-r1 35 |
. . . . . . . . . 10
(b ∩ b⊥ ) = 0 |
| 28 | | anass 76 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ (b⊥ ∩ b⊥ )) |
| 29 | | anidm 111 |
. . . . . . . . . . . 12
(b⊥ ∩ b⊥ ) = b⊥ |
| 30 | 29 | lan 77 |
. . . . . . . . . . 11
(a⊥ ∩ (b⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
| 31 | 28, 30 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 32 | 27, 31 | 2or 72 |
. . . . . . . . 9
((b ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ b⊥ )) = (0 ∪ (a⊥ ∩ b⊥ )) |
| 33 | | ax-a2 31 |
. . . . . . . . . 10
(0 ∪ (a⊥ ∩
b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ 0) |
| 34 | | or0 102 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∪ 0) = (a⊥ ∩ b⊥ ) |
| 35 | 33, 34 | ax-r2 36 |
. . . . . . . . 9
(0 ∪ (a⊥ ∩
b⊥ )) = (a⊥ ∩ b⊥ ) |
| 36 | 25, 32, 35 | 3tr 65 |
. . . . . . . 8
((b ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 37 | 36 | ran 78 |
. . . . . . 7
(((b ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) ∩ c⊥ ) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
| 38 | | anass 76 |
. . . . . . 7
(((b ∪ (a⊥ ∩ b⊥ )) ∩ b⊥ ) ∩ c⊥ ) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ c⊥ )) |
| 39 | | anass 76 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = (a⊥ ∩ (b⊥ ∩ c⊥ )) |
| 40 | 37, 38, 39 | 3tr2 64 |
. . . . . 6
((b ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ c⊥ )) = (a⊥ ∩ (b⊥ ∩ c⊥ )) |
| 41 | 21, 40 | ax-r2 36 |
. . . . 5
((a →2 b) ∩ (b
∪ c)⊥ ) = (a⊥ ∩ (b⊥ ∩ c⊥ )) |
| 42 | | an12 81 |
. . . . . 6
((a →2 b) ∩ ((b
∪ c) ∩ ((a →2 b) ∩ (a
→2 c)))) = ((b ∪ c) ∩
((a →2 b) ∩ ((a
→2 b) ∩ (a →2 c)))) |
| 43 | | anass 76 |
. . . . . . . . 9
(((a →2 b) ∩ (a
→2 b)) ∩ (a →2 c)) = ((a
→2 b) ∩ ((a →2 b) ∩ (a
→2 c))) |
| 44 | 43 | ax-r1 35 |
. . . . . . . 8
((a →2 b) ∩ ((a
→2 b) ∩ (a →2 c))) = (((a
→2 b) ∩ (a →2 b)) ∩ (a
→2 c)) |
| 45 | | anidm 111 |
. . . . . . . . . 10
((a →2 b) ∩ (a
→2 b)) = (a →2 b) |
| 46 | 45, 18 | ax-r2 36 |
. . . . . . . . 9
((a →2 b) ∩ (a
→2 b)) = (b ∪ (a⊥ ∩ b⊥ )) |
| 47 | | df-i2 45 |
. . . . . . . . 9
(a →2 c) = (c ∪
(a⊥ ∩ c⊥ )) |
| 48 | 46, 47 | 2an 79 |
. . . . . . . 8
(((a →2 b) ∩ (a
→2 b)) ∩ (a →2 c)) = ((b ∪
(a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))) |
| 49 | 44, 48 | ax-r2 36 |
. . . . . . 7
((a →2 b) ∩ ((a
→2 b) ∩ (a →2 c))) = ((b ∪
(a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))) |
| 50 | 49 | lan 77 |
. . . . . 6
((b ∪ c) ∩ ((a
→2 b) ∩ ((a →2 b) ∩ (a
→2 c)))) = ((b ∪ c) ∩
((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ )))) |
| 51 | 42, 50 | ax-r2 36 |
. . . . 5
((a →2 b) ∩ ((b
∪ c) ∩ ((a →2 b) ∩ (a
→2 c)))) = ((b ∪ c) ∩
((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ )))) |
| 52 | 41, 51 | 2or 72 |
. . . 4
(((a →2 b) ∩ (b
∪ c)⊥ ) ∪
((a →2 b) ∩ ((b
∪ c) ∩ ((a →2 b) ∩ (a
→2 c))))) = ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ ((b ∪ c) ∩
((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))))) |
| 53 | 39 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∩ (b⊥ ∩ c⊥ )) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
| 54 | | lea 160 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ c⊥ ) ≤ (a⊥ ∩ b⊥ ) |
| 55 | 54 | lerr 150 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ c⊥ ) ≤ (b ∪ (a⊥ ∩ b⊥ )) |
| 56 | 55 | lecom 180 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C (b ∪ (a⊥ ∩ b⊥ )) |
| 57 | 53, 56 | bctr 181 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ c⊥ )) C (b ∪ (a⊥ ∩ b⊥ )) |
| 58 | 4 | lecom 180 |
. . . . . . . 8
(b⊥ ∩ (a⊥ ∩ c⊥ )) C (c ∪ (a⊥ ∩ c⊥ )) |
| 59 | 2, 58 | bctr 181 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ c⊥ )) C (c ∪ (a⊥ ∩ c⊥ )) |
| 60 | 57, 59 | fh3 471 |
. . . . . 6
((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ )))) = (((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ ))) ∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ )))) |
| 61 | 60 | lan 77 |
. . . . 5
(((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))))) = (((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ (((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ ))) ∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ ))))) |
| 62 | | coman2 186 |
. . . . . . . 8
(a⊥ ∩ (b⊥ ∩ c⊥ )) C (b⊥ ∩ c⊥ ) |
| 63 | 62 | comcom2 183 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ c⊥ )) C (b⊥ ∩ c⊥
)⊥ |
| 64 | | oran 87 |
. . . . . . . 8
(b ∪ c) = (b⊥ ∩ c⊥
)⊥ |
| 65 | 64 | ax-r1 35 |
. . . . . . 7
(b⊥ ∩ c⊥ )⊥ = (b ∪ c) |
| 66 | 63, 65 | cbtr 182 |
. . . . . 6
(a⊥ ∩ (b⊥ ∩ c⊥ )) C (b ∪ c) |
| 67 | 57, 59 | com2an 484 |
. . . . . 6
(a⊥ ∩ (b⊥ ∩ c⊥ )) C ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))) |
| 68 | 66, 67 | fh3 471 |
. . . . 5
((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ ((b ∪ c) ∩
((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))))) = (((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))))) |
| 69 | | anass 76 |
. . . . 5
((((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ )))) ∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ )))) = (((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ (((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ ))) ∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ ))))) |
| 70 | 61, 68, 69 | 3tr1 63 |
. . . 4
((a⊥ ∩
(b⊥ ∩ c⊥ )) ∪ ((b ∪ c) ∩
((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))))) = ((((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ )))) ∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ )))) |
| 71 | 52, 70 | ax-r2 36 |
. . 3
(((a →2 b) ∩ (b
∪ c)⊥ ) ∪
((a →2 b) ∩ ((b
∪ c) ∩ ((a →2 b) ∩ (a
→2 c))))) = ((((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ )))) ∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ )))) |
| 72 | 10, 17, 71 | 3tr 65 |
. 2
((a →2 b) ∩ ((b
∪ c) →1 ((a →2 b) ∩ (a
→2 c)))) = ((((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ c))
∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ )))) ∩ ((a⊥ ∩ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ )))) |
| 73 | 8, 72, 47 | le3tr1 140 |
1
((a →2 b) ∩ ((b
∪ c) →1 ((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |