Proof of Theorem u1lemle2
Step | Hyp | Ref
| Expression |
1 | | anidm 111 |
. . . . . . . . 9
(a ∩ a) = a |
2 | 1 | ran 78 |
. . . . . . . 8
((a ∩ a) ∩ b) =
(a ∩ b) |
3 | 2 | ax-r1 35 |
. . . . . . 7
(a ∩ b) = ((a ∩
a) ∩ b) |
4 | | anass 76 |
. . . . . . 7
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
5 | 3, 4 | ax-r2 36 |
. . . . . 6
(a ∩ b) = (a ∩
(a ∩ b)) |
6 | | dff 101 |
. . . . . 6
0 = (a ∩ a⊥ ) |
7 | 5, 6 | 2or 72 |
. . . . 5
((a ∩ b) ∪ 0) = ((a ∩ (a ∩
b)) ∪ (a ∩ a⊥ )) |
8 | | ax-a2 31 |
. . . . . . . 8
(a⊥ ∪ (a ∩ b)) =
((a ∩ b) ∪ a⊥ ) |
9 | 8 | lan 77 |
. . . . . . 7
(a ∩ (a⊥ ∪ (a ∩ b))) =
(a ∩ ((a ∩ b) ∪
a⊥ )) |
10 | | coman1 185 |
. . . . . . . 8
(a ∩ b) C a |
11 | 10 | comcom2 183 |
. . . . . . . 8
(a ∩ b) C a⊥ |
12 | 10, 11 | fh2 470 |
. . . . . . 7
(a ∩ ((a ∩ b) ∪
a⊥ )) = ((a ∩ (a ∩
b)) ∪ (a ∩ a⊥ )) |
13 | 9, 12 | ax-r2 36 |
. . . . . 6
(a ∩ (a⊥ ∪ (a ∩ b))) =
((a ∩ (a ∩ b))
∪ (a ∩ a⊥ )) |
14 | 13 | ax-r1 35 |
. . . . 5
((a ∩ (a ∩ b))
∪ (a ∩ a⊥ )) = (a ∩ (a⊥ ∪ (a ∩ b))) |
15 | 7, 14 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ 0) = (a
∩ (a⊥ ∪ (a ∩ b))) |
16 | | df-i1 44 |
. . . . . . 7
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
17 | 16 | ax-r1 35 |
. . . . . 6
(a⊥ ∪ (a ∩ b)) =
(a →1 b) |
18 | | u1lemle2.1 |
. . . . . 6
(a →1 b) = 1 |
19 | 17, 18 | ax-r2 36 |
. . . . 5
(a⊥ ∪ (a ∩ b)) =
1 |
20 | 19 | lan 77 |
. . . 4
(a ∩ (a⊥ ∪ (a ∩ b))) =
(a ∩ 1) |
21 | 15, 20 | ax-r2 36 |
. . 3
((a ∩ b) ∪ 0) = (a
∩ 1) |
22 | | or0 102 |
. . 3
((a ∩ b) ∪ 0) = (a
∩ b) |
23 | | an1 106 |
. . 3
(a ∩ 1) = a |
24 | 21, 22, 23 | 3tr2 64 |
. 2
(a ∩ b) = a |
25 | 24 | df2le1 135 |
1
a ≤ b |