Proof of Theorem biao
Step | Hyp | Ref
| Expression |
1 | | leao1 162 |
. . . . 5
(a ∩ b) ≤ (a ∪
b) |
2 | 1 | df2le2 136 |
. . . 4
((a ∩ b) ∩ (a
∪ b)) = (a ∩ b) |
3 | 2 | ax-r1 35 |
. . 3
(a ∩ b) = ((a ∩
b) ∩ (a ∪ b)) |
4 | | anor3 90 |
. . . 4
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
5 | 1 | lecon 154 |
. . . . . 6
(a ∪ b)⊥ ≤ (a ∩ b)⊥ |
6 | | oridm 110 |
. . . . . . 7
((a ∪ b)⊥ ∪ (a ∪ b)⊥ ) = (a ∪ b)⊥ |
7 | 6 | df-le1 130 |
. . . . . 6
(a ∪ b)⊥ ≤ (a ∪ b)⊥ |
8 | 5, 7 | ler2an 173 |
. . . . 5
(a ∪ b)⊥ ≤ ((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) |
9 | | lear 161 |
. . . . . . 7
((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) ≤ (a ∪ b)⊥ |
10 | 9 | df-le2 131 |
. . . . . 6
(((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) ∪ (a ∪ b)⊥ ) = (a ∪ b)⊥ |
11 | 10 | df-le1 130 |
. . . . 5
((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) ≤ (a ∪ b)⊥ |
12 | 8, 11 | lebi 145 |
. . . 4
(a ∪ b)⊥ = ((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) |
13 | 4, 12 | ax-r2 36 |
. . 3
(a⊥ ∩ b⊥ ) = ((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) |
14 | 3, 13 | 2or 72 |
. 2
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = (((a ∩ b) ∩
(a ∪ b)) ∪ ((a
∩ b)⊥ ∩ (a ∪ b)⊥ )) |
15 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
16 | | dfb 94 |
. 2
((a ∩ b) ≡ (a
∪ b)) = (((a ∩ b) ∩
(a ∪ b)) ∪ ((a
∩ b)⊥ ∩ (a ∪ b)⊥ )) |
17 | 14, 15, 16 | 3tr1 63 |
1
(a ≡ b) = ((a ∩
b) ≡ (a ∪ b)) |