Proof of Theorem biao
| Step | Hyp | Ref
| Expression |
| 1 | | leao1 162 |
. . . . 5
(a ∩ b) ≤ (a ∪
b) |
| 2 | 1 | df2le2 136 |
. . . 4
((a ∩ b) ∩ (a
∪ b)) = (a ∩ b) |
| 3 | 2 | ax-r1 35 |
. . 3
(a ∩ b) = ((a ∩
b) ∩ (a ∪ b)) |
| 4 | | anor3 90 |
. . . 4
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 5 | 1 | lecon 154 |
. . . . . 6
(a ∪ b)⊥ ≤ (a ∩ b)⊥ |
| 6 | | oridm 110 |
. . . . . . 7
((a ∪ b)⊥ ∪ (a ∪ b)⊥ ) = (a ∪ b)⊥ |
| 7 | 6 | df-le1 130 |
. . . . . 6
(a ∪ b)⊥ ≤ (a ∪ b)⊥ |
| 8 | 5, 7 | ler2an 173 |
. . . . 5
(a ∪ b)⊥ ≤ ((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) |
| 9 | | lear 161 |
. . . . . . 7
((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) ≤ (a ∪ b)⊥ |
| 10 | 9 | df-le2 131 |
. . . . . 6
(((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) ∪ (a ∪ b)⊥ ) = (a ∪ b)⊥ |
| 11 | 10 | df-le1 130 |
. . . . 5
((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) ≤ (a ∪ b)⊥ |
| 12 | 8, 11 | lebi 145 |
. . . 4
(a ∪ b)⊥ = ((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) |
| 13 | 4, 12 | ax-r2 36 |
. . 3
(a⊥ ∩ b⊥ ) = ((a ∩ b)⊥ ∩ (a ∪ b)⊥ ) |
| 14 | 3, 13 | 2or 72 |
. 2
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = (((a ∩ b) ∩
(a ∪ b)) ∪ ((a
∩ b)⊥ ∩ (a ∪ b)⊥ )) |
| 15 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
| 16 | | dfb 94 |
. 2
((a ∩ b) ≡ (a
∪ b)) = (((a ∩ b) ∩
(a ∪ b)) ∪ ((a
∩ b)⊥ ∩ (a ∪ b)⊥ )) |
| 17 | 14, 15, 16 | 3tr1 63 |
1
(a ≡ b) = ((a ∩
b) ≡ (a ∪ b)) |