Proof of Theorem mlaconj4
Step | Hyp | Ref
| Expression |
1 | | biao 799 |
. . . . 5
(a ≡ b) = ((a ∩
b) ≡ (a ∪ b)) |
2 | | bicom 96 |
. . . . 5
((a ∩ b) ≡ (a
∪ b)) = ((a ∪ b)
≡ (a ∩ b)) |
3 | 1, 2 | ax-r2 36 |
. . . 4
(a ≡ b) = ((a ∪
b) ≡ (a ∩ b)) |
4 | 3 | bile 142 |
. . 3
(a ≡ b) ≤ ((a
∪ b) ≡ (a ∩ b)) |
5 | | orbile 843 |
. . . 4
((a ≡ c) ∪ (b
≡ c)) ≤ (((a ∩ b)
→2 c) ∩ (c →1 (a ∪ b))) |
6 | | imp3 841 |
. . . 4
(((a ∩ b) →2 c) ∩ (c
→1 (a ∪ b))) = (((a
∩ b)⊥ ∩ c⊥ ) ∪ (c ∩ (a ∪
b))) |
7 | 5, 6 | lbtr 139 |
. . 3
((a ≡ c) ∪ (b
≡ c)) ≤ (((a ∩ b)⊥ ∩ c⊥ ) ∪ (c ∩ (a ∪
b))) |
8 | 4, 7 | le2an 169 |
. 2
((a ≡ b) ∩ ((a
≡ c) ∪ (b ≡ c)))
≤ (((a ∪ b) ≡ (a
∩ b)) ∩ (((a ∩ b)⊥ ∩ c⊥ ) ∪ (c ∩ (a ∪
b)))) |
9 | | mlaconj4.2 |
. . . . . 6
d = (a ∪ b) |
10 | | mlaconj4.3 |
. . . . . 6
e = (a ∩ b) |
11 | 9, 10 | 2bi 99 |
. . . . 5
(d ≡ e) = ((a ∪
b) ≡ (a ∩ b)) |
12 | 10 | ax-r4 37 |
. . . . . . 7
e⊥ = (a ∩ b)⊥ |
13 | 12 | ran 78 |
. . . . . 6
(e⊥ ∩ c⊥ ) = ((a ∩ b)⊥ ∩ c⊥ ) |
14 | | ancom 74 |
. . . . . . 7
(d ∩ c) = (c ∩
d) |
15 | 9 | lan 77 |
. . . . . . 7
(c ∩ d) = (c ∩
(a ∪ b)) |
16 | 14, 15 | ax-r2 36 |
. . . . . 6
(d ∩ c) = (c ∩
(a ∪ b)) |
17 | 13, 16 | 2or 72 |
. . . . 5
((e⊥ ∩ c⊥ ) ∪ (d ∩ c)) =
(((a ∩ b)⊥ ∩ c⊥ ) ∪ (c ∩ (a ∪
b))) |
18 | 11, 17 | 2an 79 |
. . . 4
((d ≡ e) ∩ ((e⊥ ∩ c⊥ ) ∪ (d ∩ c))) =
(((a ∪ b) ≡ (a
∩ b)) ∩ (((a ∩ b)⊥ ∩ c⊥ ) ∪ (c ∩ (a ∪
b)))) |
19 | 18 | ax-r1 35 |
. . 3
(((a ∪ b) ≡ (a
∩ b)) ∩ (((a ∩ b)⊥ ∩ c⊥ ) ∪ (c ∩ (a ∪
b)))) = ((d ≡ e)
∩ ((e⊥ ∩ c⊥ ) ∪ (d ∩ c))) |
20 | | lea 160 |
. . . . . 6
((d ≡ e) ∩ ((e⊥ ∩ c⊥ ) ∪ (d ∩ c)))
≤ (d ≡ e) |
21 | | bicom 96 |
. . . . . . 7
((a ∪ b) ≡ (a
∩ b)) = ((a ∩ b)
≡ (a ∪ b)) |
22 | 21, 11, 1 | 3tr1 63 |
. . . . . 6
(d ≡ e) = (a ≡
b) |
23 | 20, 22 | lbtr 139 |
. . . . 5
((d ≡ e) ∩ ((e⊥ ∩ c⊥ ) ∪ (d ∩ c)))
≤ (a ≡ b) |
24 | | mlaconj4.1 |
. . . . . 6
((d ≡ e) ∩ ((e⊥ ∩ c⊥ ) ∪ (d ∩ c)))
≤ (d ≡ c) |
25 | 9 | rbi 98 |
. . . . . 6
(d ≡ c) = ((a ∪
b) ≡ c) |
26 | 24, 25 | lbtr 139 |
. . . . 5
((d ≡ e) ∩ ((e⊥ ∩ c⊥ ) ∪ (d ∩ c)))
≤ ((a ∪ b) ≡ c) |
27 | 23, 26 | ler2an 173 |
. . . 4
((d ≡ e) ∩ ((e⊥ ∩ c⊥ ) ∪ (d ∩ c)))
≤ ((a ≡ b) ∩ ((a
∪ b) ≡ c)) |
28 | | anass 76 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = (a⊥ ∩ (b⊥ ∩ c⊥ )) |
29 | | coman1 185 |
. . . . . . . . . . . 12
(a⊥ ∩ (b⊥ ∩ c⊥ )) C a⊥ |
30 | 29 | comcom7 460 |
. . . . . . . . . . 11
(a⊥ ∩ (b⊥ ∩ c⊥ )) C a |
31 | 28, 30 | bctr 181 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C a |
32 | | an32 83 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = ((a⊥ ∩ c⊥ ) ∩ b⊥ ) |
33 | | coman2 186 |
. . . . . . . . . . . 12
((a⊥ ∩ c⊥ ) ∩ b⊥ ) C b⊥ |
34 | 33 | comcom7 460 |
. . . . . . . . . . 11
((a⊥ ∩ c⊥ ) ∩ b⊥ ) C b |
35 | 32, 34 | bctr 181 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C b |
36 | 31, 35 | com2an 484 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C (a ∩ b) |
37 | | coman1 185 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C (a⊥ ∩ b⊥ ) |
38 | 36, 37 | com2or 483 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
39 | 31, 35 | com2or 483 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C (a ∪ b) |
40 | | coman2 186 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C c⊥ |
41 | 40 | comcom7 460 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C c |
42 | 39, 41 | com2an 484 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ c⊥ ) C ((a ∪ b) ∩
c) |
43 | 38, 42 | fh2c 477 |
. . . . . . 7
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (((a ∪ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ ))) = ((((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∩ ((a ∪ b) ∩
c)) ∪ (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ ))) |
44 | | anor3 90 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
45 | | comanr1 464 |
. . . . . . . . . . . 12
(a ∪ b) C ((a
∪ b) ∩ c) |
46 | 45 | comcom3 454 |
. . . . . . . . . . 11
(a ∪ b)⊥ C ((a ∪ b) ∩
c) |
47 | 44, 46 | bctr 181 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C ((a ∪ b) ∩
c) |
48 | | coman1 185 |
. . . . . . . . . . . 12
(a⊥ ∩ b⊥ ) C a⊥ |
49 | 48 | comcom7 460 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) C a |
50 | | coman2 186 |
. . . . . . . . . . . 12
(a⊥ ∩ b⊥ ) C b⊥ |
51 | 50 | comcom7 460 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) C b |
52 | 49, 51 | com2an 484 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C (a ∩ b) |
53 | 47, 52 | fh2rc 480 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((a ∪ b) ∩
c)) = (((a ∩ b) ∩
((a ∪ b) ∩ c))
∪ ((a⊥ ∩ b⊥ ) ∩ ((a ∪ b) ∩
c))) |
54 | | anass 76 |
. . . . . . . . . . . 12
(((a ∩ b) ∩ (a
∪ b)) ∩ c) = ((a ∩
b) ∩ ((a ∪ b) ∩
c)) |
55 | 54 | ax-r1 35 |
. . . . . . . . . . 11
((a ∩ b) ∩ ((a
∪ b) ∩ c)) = (((a ∩
b) ∩ (a ∪ b))
∩ c) |
56 | | leao1 162 |
. . . . . . . . . . . . 13
(a ∩ b) ≤ (a ∪
b) |
57 | 56 | df2le2 136 |
. . . . . . . . . . . 12
((a ∩ b) ∩ (a
∪ b)) = (a ∩ b) |
58 | 57 | ran 78 |
. . . . . . . . . . 11
(((a ∩ b) ∩ (a
∪ b)) ∩ c) = ((a ∩
b) ∩ c) |
59 | 55, 58 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ b) ∩ ((a
∪ b) ∩ c)) = ((a ∩
b) ∩ c) |
60 | | dff 101 |
. . . . . . . . . . . . . 14
0 = ((a⊥ ∩
b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
61 | | oran 87 |
. . . . . . . . . . . . . . . 16
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
62 | 61 | lan 77 |
. . . . . . . . . . . . . . 15
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
63 | 62 | ax-r1 35 |
. . . . . . . . . . . . . 14
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥ ) =
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) |
64 | 60, 63 | ax-r2 36 |
. . . . . . . . . . . . 13
0 = ((a⊥ ∩
b⊥ ) ∩ (a ∪ b)) |
65 | 64 | ran 78 |
. . . . . . . . . . . 12
(0 ∩ c) = (((a⊥ ∩ b⊥ ) ∩ (a ∪ b))
∩ c) |
66 | 65 | ax-r1 35 |
. . . . . . . . . . 11
(((a⊥ ∩
b⊥ ) ∩ (a ∪ b))
∩ c) = (0 ∩ c) |
67 | | anass 76 |
. . . . . . . . . . 11
(((a⊥ ∩
b⊥ ) ∩ (a ∪ b))
∩ c) = ((a⊥ ∩ b⊥ ) ∩ ((a ∪ b) ∩
c)) |
68 | | an0r 109 |
. . . . . . . . . . 11
(0 ∩ c) = 0 |
69 | 66, 67, 68 | 3tr2 64 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ ((a ∪ b) ∩
c)) = 0 |
70 | 59, 69 | 2or 72 |
. . . . . . . . 9
(((a ∩ b) ∩ ((a
∪ b) ∩ c)) ∪ ((a⊥ ∩ b⊥ ) ∩ ((a ∪ b) ∩
c))) = (((a ∩ b) ∩
c) ∪ 0) |
71 | | or0 102 |
. . . . . . . . 9
(((a ∩ b) ∩ c)
∪ 0) = ((a ∩ b) ∩ c) |
72 | 53, 70, 71 | 3tr 65 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((a ∪ b) ∩
c)) = ((a ∩ b) ∩
c) |
73 | | comanr1 464 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
74 | 73, 52 | fh2rc 480 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) = (((a ∩ b) ∩
((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∪ ((a⊥ ∩ b⊥ ) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ ))) |
75 | | an4 86 |
. . . . . . . . . . 11
((a ∩ b) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) = ((a ∩ (a⊥ ∩ b⊥ )) ∩ (b ∩ c⊥ )) |
76 | | dff 101 |
. . . . . . . . . . . . . . 15
0 = (a ∩ a⊥ ) |
77 | 76 | ran 78 |
. . . . . . . . . . . . . 14
(0 ∩ b⊥ ) =
((a ∩ a⊥ ) ∩ b⊥ ) |
78 | | an0r 109 |
. . . . . . . . . . . . . 14
(0 ∩ b⊥ ) =
0 |
79 | | anass 76 |
. . . . . . . . . . . . . 14
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
80 | 77, 78, 79 | 3tr2 64 |
. . . . . . . . . . . . 13
0 = (a ∩ (a⊥ ∩ b⊥ )) |
81 | 80 | ran 78 |
. . . . . . . . . . . 12
(0 ∩ (b ∩ c⊥ )) = ((a ∩ (a⊥ ∩ b⊥ )) ∩ (b ∩ c⊥ )) |
82 | 81 | ax-r1 35 |
. . . . . . . . . . 11
((a ∩ (a⊥ ∩ b⊥ )) ∩ (b ∩ c⊥ )) = (0 ∩ (b ∩ c⊥ )) |
83 | | an0r 109 |
. . . . . . . . . . 11
(0 ∩ (b ∩ c⊥ )) = 0 |
84 | 75, 82, 83 | 3tr 65 |
. . . . . . . . . 10
((a ∩ b) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) = 0 |
85 | | anass 76 |
. . . . . . . . . . . 12
(((a⊥ ∩
b⊥ ) ∩ (a⊥ ∩ b⊥ )) ∩ c⊥ ) = ((a⊥ ∩ b⊥ ) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
86 | 85 | ax-r1 35 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ ) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) = (((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )) ∩ c⊥ ) |
87 | | anidm 111 |
. . . . . . . . . . . 12
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
88 | 87 | ran 78 |
. . . . . . . . . . 11
(((a⊥ ∩
b⊥ ) ∩ (a⊥ ∩ b⊥ )) ∩ c⊥ ) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
89 | 86, 88 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
90 | 84, 89 | 2or 72 |
. . . . . . . . 9
(((a ∩ b) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) ∪ ((a⊥ ∩ b⊥ ) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ ))) = (0 ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
91 | | or0r 103 |
. . . . . . . . 9
(0 ∪ ((a⊥ ∩
b⊥ ) ∩ c⊥ )) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
92 | 74, 90, 91 | 3tr 65 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
93 | 72, 92 | 2or 72 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((a ∪ b) ∩
c)) ∪ (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∩ ((a⊥ ∩ b⊥ ) ∩ c⊥ ))) = (((a ∩ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
94 | 43, 93 | ax-r2 36 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (((a ∪ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ ))) = (((a ∩ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
95 | | dfb 94 |
. . . . . . 7
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
96 | | dfb 94 |
. . . . . . . 8
((a ∪ b) ≡ c) =
(((a ∪ b) ∩ c)
∪ ((a ∪ b)⊥ ∩ c⊥ )) |
97 | 44 | ran 78 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = ((a ∪ b)⊥ ∩ c⊥ ) |
98 | 97 | lor 70 |
. . . . . . . . 9
(((a ∪ b) ∩ c)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) = (((a ∪ b) ∩
c) ∪ ((a ∪ b)⊥ ∩ c⊥ )) |
99 | 98 | ax-r1 35 |
. . . . . . . 8
(((a ∪ b) ∩ c)
∪ ((a ∪ b)⊥ ∩ c⊥ )) = (((a ∪ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
100 | 96, 99 | ax-r2 36 |
. . . . . . 7
((a ∪ b) ≡ c) =
(((a ∪ b) ∩ c)
∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
101 | 95, 100 | 2an 79 |
. . . . . 6
((a ≡ b) ∩ ((a
∪ b) ≡ c)) = (((a ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ (((a ∪ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ ))) |
102 | | bi3 839 |
. . . . . 6
((a ≡ b) ∩ (b
≡ c)) = (((a ∩ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
103 | 94, 101, 102 | 3tr1 63 |
. . . . 5
((a ≡ b) ∩ ((a
∪ b) ≡ c)) = ((a
≡ b) ∩ (b ≡ c)) |
104 | | mlaoml 833 |
. . . . 5
((a ≡ b) ∩ (b
≡ c)) ≤ (a ≡ c) |
105 | 103, 104 | bltr 138 |
. . . 4
((a ≡ b) ∩ ((a
∪ b) ≡ c)) ≤ (a
≡ c) |
106 | 27, 105 | letr 137 |
. . 3
((d ≡ e) ∩ ((e⊥ ∩ c⊥ ) ∪ (d ∩ c)))
≤ (a ≡ c) |
107 | 19, 106 | bltr 138 |
. 2
(((a ∪ b) ≡ (a
∩ b)) ∩ (((a ∩ b)⊥ ∩ c⊥ ) ∪ (c ∩ (a ∪
b)))) ≤ (a ≡ c) |
108 | 8, 107 | letr 137 |
1
((a ≡ b) ∩ ((a
≡ c) ∪ (b ≡ c)))
≤ (a ≡ c) |