Proof of Theorem bi1o1a
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . . . . . 7
(a⊥ ∩ b⊥ ) ≤ a⊥ |
2 | | leo 158 |
. . . . . . 7
a⊥ ≤ (a⊥ ∪ (a ∩ b)) |
3 | 1, 2 | letr 137 |
. . . . . 6
(a⊥ ∩ b⊥ ) ≤ (a⊥ ∪ (a ∩ b)) |
4 | 3 | lecom 180 |
. . . . 5
(a⊥ ∩ b⊥ ) C (a⊥ ∪ (a ∩ b)) |
5 | 4 | comcom 453 |
. . . 4
(a⊥ ∪ (a ∩ b)) C
(a⊥ ∩ b⊥ ) |
6 | | comor1 461 |
. . . . 5
(a⊥ ∪ (a ∩ b)) C
a⊥ |
7 | 6 | comcom7 460 |
. . . 4
(a⊥ ∪ (a ∩ b)) C
a |
8 | 5, 7 | fh1 469 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ ((a⊥ ∩ b⊥ ) ∪ a)) = (((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ (a ∩ b))
∩ a)) |
9 | 8 | ax-r1 35 |
. 2
(((a⊥ ∪
(a ∩ b)) ∩ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ (a ∩ b))
∩ a)) = ((a⊥ ∪ (a ∩ b))
∩ ((a⊥ ∩ b⊥ ) ∪ a)) |
10 | | dfb 94 |
. . 3
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
11 | | ax-a2 31 |
. . 3
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) |
12 | | leid 148 |
. . . . . 6
(a⊥ ∩ b⊥ ) ≤ (a⊥ ∩ b⊥ ) |
13 | 3, 12 | ler2an 173 |
. . . . 5
(a⊥ ∩ b⊥ ) ≤ ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b⊥ )) |
14 | | lear 161 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∩ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∩ b⊥ ) |
15 | 13, 14 | lebi 145 |
. . . 4
(a⊥ ∩ b⊥ ) = ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b⊥ )) |
16 | | dff 101 |
. . . . . . 7
0 = (a ∩ a⊥ ) |
17 | | ancom 74 |
. . . . . . 7
(a ∩ a⊥ ) = (a⊥ ∩ a) |
18 | 16, 17 | ax-r2 36 |
. . . . . 6
0 = (a⊥ ∩
a) |
19 | 18 | ax-r5 38 |
. . . . 5
(0 ∪ ((a ∩ b) ∩ a)) =
((a⊥ ∩ a) ∪ ((a
∩ b) ∩ a)) |
20 | | lea 160 |
. . . . . . . 8
(a ∩ b) ≤ a |
21 | 20 | df2le2 136 |
. . . . . . 7
((a ∩ b) ∩ a) =
(a ∩ b) |
22 | 21 | ax-r1 35 |
. . . . . 6
(a ∩ b) = ((a ∩
b) ∩ a) |
23 | | or0r 103 |
. . . . . . 7
(0 ∪ ((a ∩ b) ∩ a)) =
((a ∩ b) ∩ a) |
24 | 23 | ax-r1 35 |
. . . . . 6
((a ∩ b) ∩ a) = (0
∪ ((a ∩ b) ∩ a)) |
25 | 22, 24 | ax-r2 36 |
. . . . 5
(a ∩ b) = (0 ∪ ((a ∩ b) ∩
a)) |
26 | | comid 187 |
. . . . . . 7
a C a |
27 | 26 | comcom2 183 |
. . . . . 6
a C a⊥ |
28 | | comanr1 464 |
. . . . . 6
a C (a ∩ b) |
29 | 27, 28 | fh1r 473 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∩ a) =
((a⊥ ∩ a) ∪ ((a
∩ b) ∩ a)) |
30 | 19, 25, 29 | 3tr1 63 |
. . . 4
(a ∩ b) = ((a⊥ ∪ (a ∩ b))
∩ a) |
31 | 15, 30 | 2or 72 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) =
(((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ (a ∩ b))
∩ a)) |
32 | 10, 11, 31 | 3tr 65 |
. 2
(a ≡ b) = (((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ (a ∩ b))
∩ a)) |
33 | | df-i1 44 |
. . . 4
(a →1 (a ∩ b)) =
(a⊥ ∪ (a ∩ (a ∩
b))) |
34 | | lear 161 |
. . . . . 6
(a ∩ (a ∩ b)) ≤
(a ∩ b) |
35 | | leid 148 |
. . . . . . 7
(a ∩ b) ≤ (a ∩
b) |
36 | 20, 35 | ler2an 173 |
. . . . . 6
(a ∩ b) ≤ (a ∩
(a ∩ b)) |
37 | 34, 36 | lebi 145 |
. . . . 5
(a ∩ (a ∩ b)) =
(a ∩ b) |
38 | 37 | lor 70 |
. . . 4
(a⊥ ∪ (a ∩ (a ∩
b))) = (a⊥ ∪ (a ∩ b)) |
39 | 33, 38 | ax-r2 36 |
. . 3
(a →1 (a ∩ b)) =
(a⊥ ∪ (a ∩ b)) |
40 | | df-i1 44 |
. . . 4
((a ∪ b) →1 a) = ((a ∪
b)⊥ ∪ ((a ∪ b) ∩
a)) |
41 | | anor3 90 |
. . . . . 6
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
42 | 41 | ax-r1 35 |
. . . . 5
(a ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
43 | | lear 161 |
. . . . . 6
((a ∪ b) ∩ a) ≤
a |
44 | | leo 158 |
. . . . . . 7
a ≤ (a ∪ b) |
45 | | leid 148 |
. . . . . . 7
a ≤ a |
46 | 44, 45 | ler2an 173 |
. . . . . 6
a ≤ ((a ∪ b) ∩
a) |
47 | 43, 46 | lebi 145 |
. . . . 5
((a ∪ b) ∩ a) =
a |
48 | 42, 47 | 2or 72 |
. . . 4
((a ∪ b)⊥ ∪ ((a ∪ b) ∩
a)) = ((a⊥ ∩ b⊥ ) ∪ a) |
49 | 40, 48 | ax-r2 36 |
. . 3
((a ∪ b) →1 a) = ((a⊥ ∩ b⊥ ) ∪ a) |
50 | 39, 49 | 2an 79 |
. 2
((a →1 (a ∩ b))
∩ ((a ∪ b) →1 a)) = ((a⊥ ∪ (a ∩ b))
∩ ((a⊥ ∩ b⊥ ) ∪ a)) |
51 | 9, 32, 50 | 3tr1 63 |
1
(a ≡ b) = ((a
→1 (a ∩ b)) ∩ ((a
∪ b) →1 a)) |