| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > com3iia | GIF version | ||
| Description: The dual of com3ii 457. (Contributed by Roy F. Longton, 2-Jul-2005.) |
| Ref | Expression |
|---|---|
| com3iia.1 | a C b |
| Ref | Expression |
|---|---|
| com3iia | (a ∪ (a⊥ ∩ b)) = (a ∪ b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comid 187 | . . . 4 a C a | |
| 2 | 1 | comcom2 183 | . . 3 a C a⊥ |
| 3 | com3iia.1 | . . 3 a C b | |
| 4 | 2, 3 | fh3 471 | . 2 (a ∪ (a⊥ ∩ b)) = ((a ∪ a⊥ ) ∩ (a ∪ b)) |
| 5 | lear 161 | . . 3 ((a ∪ a⊥ ) ∩ (a ∪ b)) ≤ (a ∪ b) | |
| 6 | ax-a4 33 | . . . . 5 ((a ∪ b) ∪ (a ∪ a⊥ )) = (a ∪ a⊥ ) | |
| 7 | 6 | df-le1 130 | . . . 4 (a ∪ b) ≤ (a ∪ a⊥ ) |
| 8 | leid 148 | . . . 4 (a ∪ b) ≤ (a ∪ b) | |
| 9 | 7, 8 | ler2an 173 | . . 3 (a ∪ b) ≤ ((a ∪ a⊥ ) ∩ (a ∪ b)) |
| 10 | 5, 9 | lebi 145 | . 2 ((a ∪ a⊥ ) ∩ (a ∪ b)) = (a ∪ b) |
| 11 | 4, 10 | ax-r2 36 | 1 (a ∪ (a⊥ ∩ b)) = (a ∪ b) |
| Colors of variables: term |
| Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |