Proof of Theorem com3ii
Step | Hyp | Ref
| Expression |
1 | | comcom.1 |
. . . . . 6
a C b |
2 | 1 | comcom 453 |
. . . . 5
b C a |
3 | 2 | comd 456 |
. . . 4
b = ((b ∪ a) ∩
(b ∪ a⊥ )) |
4 | 3 | lan 77 |
. . 3
(a ∩ b) = (a ∩
((b ∪ a) ∩ (b
∪ a⊥
))) |
5 | | anass 76 |
. . . . 5
((a ∩ (b ∪ a))
∩ (b ∪ a⊥ )) = (a ∩ ((b
∪ a) ∩ (b ∪ a⊥ ))) |
6 | 5 | ax-r1 35 |
. . . 4
(a ∩ ((b ∪ a) ∩
(b ∪ a⊥ ))) = ((a ∩ (b ∪
a)) ∩ (b ∪ a⊥ )) |
7 | | ax-a2 31 |
. . . . . . 7
(b ∪ a) = (a ∪
b) |
8 | 7 | lan 77 |
. . . . . 6
(a ∩ (b ∪ a)) =
(a ∩ (a ∪ b)) |
9 | | anabs 121 |
. . . . . 6
(a ∩ (a ∪ b)) =
a |
10 | 8, 9 | ax-r2 36 |
. . . . 5
(a ∩ (b ∪ a)) =
a |
11 | | ax-a2 31 |
. . . . 5
(b ∪ a⊥ ) = (a⊥ ∪ b) |
12 | 10, 11 | 2an 79 |
. . . 4
((a ∩ (b ∪ a))
∩ (b ∪ a⊥ )) = (a ∩ (a⊥ ∪ b)) |
13 | 6, 12 | ax-r2 36 |
. . 3
(a ∩ ((b ∪ a) ∩
(b ∪ a⊥ ))) = (a ∩ (a⊥ ∪ b)) |
14 | 4, 13 | ax-r2 36 |
. 2
(a ∩ b) = (a ∩
(a⊥ ∪ b)) |
15 | 14 | ax-r1 35 |
1
(a ∩ (a⊥ ∪ b)) = (a ∩
b) |