Proof of Theorem lem4.6.7
Step | Hyp | Ref
| Expression |
1 | | leid 148 |
. . . . . . 7
a ≤ a |
2 | 1 | sklem 230 |
. . . . . 6
(a⊥ ∪ a) = 1 |
3 | 2 | ax-r1 35 |
. . . . 5
1 = (a⊥ ∪
a) |
4 | | lem4.6.7.1 |
. . . . . . 7
a⊥ ≤ b |
5 | 4 | df-le2 131 |
. . . . . 6
(a⊥ ∪ b) = b |
6 | 5 | ax-r1 35 |
. . . . 5
b = (a⊥ ∪ b) |
7 | 3, 6 | 2an 79 |
. . . 4
(1 ∩ b) = ((a⊥ ∪ a) ∩ (a⊥ ∪ b)) |
8 | | ax-a3 32 |
. . . . . 6
((b ∪ a⊥ ) ∪ (a ∩ b)) =
(b ∪ (a⊥ ∪ (a ∩ b))) |
9 | 8 | ax-r1 35 |
. . . . 5
(b ∪ (a⊥ ∪ (a ∩ b))) =
((b ∪ a⊥ ) ∪ (a ∩ b)) |
10 | | le1 146 |
. . . . . . . . 9
b ≤ 1 |
11 | | leid 148 |
. . . . . . . . 9
b ≤ b |
12 | 10, 11 | ler2an 173 |
. . . . . . . 8
b ≤ (1 ∩ b) |
13 | | le1 146 |
. . . . . . . . 9
a⊥ ≤
1 |
14 | 13, 4 | ler2an 173 |
. . . . . . . 8
a⊥ ≤ (1 ∩
b) |
15 | 12, 14 | lel2or 170 |
. . . . . . 7
(b ∪ a⊥ ) ≤ (1 ∩ b) |
16 | | le1 146 |
. . . . . . . 8
a ≤ 1 |
17 | 16 | leran 153 |
. . . . . . 7
(a ∩ b) ≤ (1 ∩ b) |
18 | 15, 17 | lel2or 170 |
. . . . . 6
((b ∪ a⊥ ) ∪ (a ∩ b)) ≤
(1 ∩ b) |
19 | | leao2 163 |
. . . . . . 7
(1 ∩ b) ≤ (b ∪ a⊥ ) |
20 | 19 | ler 149 |
. . . . . 6
(1 ∩ b) ≤ ((b ∪ a⊥ ) ∪ (a ∩ b)) |
21 | 18, 20 | lebi 145 |
. . . . 5
((b ∪ a⊥ ) ∪ (a ∩ b)) = (1
∩ b) |
22 | 9, 21 | ax-r2 36 |
. . . 4
(b ∪ (a⊥ ∪ (a ∩ b))) =
(1 ∩ b) |
23 | | comid 187 |
. . . . . 6
a C a |
24 | 23 | comcom3 454 |
. . . . 5
a⊥ C
a |
25 | 4 | lecom 180 |
. . . . 5
a⊥ C
b |
26 | 24, 25 | fh3 471 |
. . . 4
(a⊥ ∪ (a ∩ b)) =
((a⊥ ∪ a) ∩ (a⊥ ∪ b)) |
27 | 7, 22, 26 | 3tr1 63 |
. . 3
(b ∪ (a⊥ ∪ (a ∩ b))) =
(a⊥ ∪ (a ∩ b)) |
28 | 27 | df-le1 130 |
. 2
b ≤ (a⊥ ∪ (a ∩ b)) |
29 | | df-i1 44 |
. . 3
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
30 | 29 | ax-r1 35 |
. 2
(a⊥ ∪ (a ∩ b)) =
(a →1 b) |
31 | 28, 30 | lbtr 139 |
1
b ≤ (a →1 b) |