Proof of Theorem comanb
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . . 4
(((a ∪ c)⊥ ∪ ((a ∩ b) ∩
c)) ∩ (b →1 c)) ≤ ((a
∪ c)⊥ ∪ ((a ∩ b) ∩
c)) |
2 | | lea 160 |
. . . . . . 7
(a ∩ b) ≤ a |
3 | | leo 158 |
. . . . . . 7
a ≤ (a ∪ c) |
4 | 2, 3 | letr 137 |
. . . . . 6
(a ∩ b) ≤ (a ∪
c) |
5 | 4 | lecon 154 |
. . . . 5
(a ∪ c)⊥ ≤ (a ∩ b)⊥ |
6 | 5 | leror 152 |
. . . 4
((a ∪ c)⊥ ∪ ((a ∩ b) ∩
c)) ≤ ((a ∩ b)⊥ ∪ ((a ∩ b) ∩
c)) |
7 | 1, 6 | letr 137 |
. . 3
(((a ∪ c)⊥ ∪ ((a ∩ b) ∩
c)) ∩ (b →1 c)) ≤ ((a
∩ b)⊥ ∪ ((a ∩ b) ∩
c)) |
8 | | comanblem1 870 |
. . 3
((a ≡ c) ∩ (b
≡ c)) = (((a ∪ c)⊥ ∪ ((a ∩ b) ∩
c)) ∩ (b →1 c)) |
9 | | df-i1 44 |
. . . 4
((a ∩ b) →1 ((a ≡ c)
∩ (b ≡ c))) = ((a ∩
b)⊥ ∪ ((a ∩ b) ∩
((a ≡ c) ∩ (b
≡ c)))) |
10 | | comanblem2 871 |
. . . . 5
((a ∩ b) ∩ ((a
≡ c) ∩ (b ≡ c))) =
((a ∩ b) ∩ c) |
11 | 10 | lor 70 |
. . . 4
((a ∩ b)⊥ ∪ ((a ∩ b) ∩
((a ≡ c) ∩ (b
≡ c)))) = ((a ∩ b)⊥ ∪ ((a ∩ b) ∩
c)) |
12 | 9, 11 | ax-r2 36 |
. . 3
((a ∩ b) →1 ((a ≡ c)
∩ (b ≡ c))) = ((a ∩
b)⊥ ∪ ((a ∩ b) ∩
c)) |
13 | 7, 8, 12 | le3tr1 140 |
. 2
((a ≡ c) ∩ (b
≡ c)) ≤ ((a ∩ b)
→1 ((a ≡ c) ∩ (b
≡ c))) |
14 | 13 | i1com 708 |
1
(a ∩ b) C ((a
≡ c) ∩ (b ≡ c)) |