Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comanbn | GIF version |
Description: Biconditional commutation law. (Contributed by NM, 1-Dec-1999.) |
Ref | Expression |
---|---|
comanbn | (a⊥ ∩ b⊥ ) C ((a ≡ c) ∩ (b ≡ c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comanb 872 | . 2 (a⊥ ∩ b⊥ ) C ((a⊥ ≡ c⊥ ) ∩ (b⊥ ≡ c⊥ )) | |
2 | conb 122 | . . . 4 (a ≡ c) = (a⊥ ≡ c⊥ ) | |
3 | conb 122 | . . . 4 (b ≡ c) = (b⊥ ≡ c⊥ ) | |
4 | 2, 3 | 2an 79 | . . 3 ((a ≡ c) ∩ (b ≡ c)) = ((a⊥ ≡ c⊥ ) ∩ (b⊥ ≡ c⊥ )) |
5 | 4 | ax-r1 35 | . 2 ((a⊥ ≡ c⊥ ) ∩ (b⊥ ≡ c⊥ )) = ((a ≡ c) ∩ (b ≡ c)) |
6 | 1, 5 | cbtr 182 | 1 (a⊥ ∩ b⊥ ) C ((a ≡ c) ∩ (b ≡ c)) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ≡ tb 5 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |