Proof of Theorem comanblem2
| Step | Hyp | Ref
| Expression |
| 1 | | dfb 94 |
. . . 4
(a ≡ c) = ((a ∩
c) ∪ (a⊥ ∩ c⊥ )) |
| 2 | | dfb 94 |
. . . 4
(b ≡ c) = ((b ∩
c) ∪ (b⊥ ∩ c⊥ )) |
| 3 | 1, 2 | 2an 79 |
. . 3
((a ≡ c) ∩ (b
≡ c)) = (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ ))) |
| 4 | 3 | lan 77 |
. 2
((a ∩ b) ∩ ((a
≡ c) ∩ (b ≡ c))) =
((a ∩ b) ∩ (((a
∩ c) ∪ (a⊥ ∩ c⊥ )) ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ )))) |
| 5 | | comanr1 464 |
. . . . . 6
a C (a ∩ c) |
| 6 | | comanr1 464 |
. . . . . . 7
a⊥ C
(a⊥ ∩ c⊥ ) |
| 7 | 6 | comcom6 459 |
. . . . . 6
a C (a⊥ ∩ c⊥ ) |
| 8 | 5, 7 | fh1 469 |
. . . . 5
(a ∩ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = ((a ∩ (a ∩
c)) ∪ (a ∩ (a⊥ ∩ c⊥ ))) |
| 9 | | anass 76 |
. . . . . . . 8
((a ∩ a) ∩ c) =
(a ∩ (a ∩ c)) |
| 10 | 9 | ax-r1 35 |
. . . . . . 7
(a ∩ (a ∩ c)) =
((a ∩ a) ∩ c) |
| 11 | | anidm 111 |
. . . . . . . 8
(a ∩ a) = a |
| 12 | 11 | ran 78 |
. . . . . . 7
((a ∩ a) ∩ c) =
(a ∩ c) |
| 13 | 10, 12 | ax-r2 36 |
. . . . . 6
(a ∩ (a ∩ c)) =
(a ∩ c) |
| 14 | | dff 101 |
. . . . . . . . 9
0 = (a ∩ a⊥ ) |
| 15 | 14 | ran 78 |
. . . . . . . 8
(0 ∩ c⊥ ) =
((a ∩ a⊥ ) ∩ c⊥ ) |
| 16 | 15 | ax-r1 35 |
. . . . . . 7
((a ∩ a⊥ ) ∩ c⊥ ) = (0 ∩ c⊥ ) |
| 17 | | anass 76 |
. . . . . . 7
((a ∩ a⊥ ) ∩ c⊥ ) = (a ∩ (a⊥ ∩ c⊥ )) |
| 18 | | an0r 109 |
. . . . . . 7
(0 ∩ c⊥ ) =
0 |
| 19 | 16, 17, 18 | 3tr2 64 |
. . . . . 6
(a ∩ (a⊥ ∩ c⊥ )) = 0 |
| 20 | 13, 19 | 2or 72 |
. . . . 5
((a ∩ (a ∩ c))
∪ (a ∩ (a⊥ ∩ c⊥ ))) = ((a ∩ c) ∪
0) |
| 21 | | or0 102 |
. . . . 5
((a ∩ c) ∪ 0) = (a
∩ c) |
| 22 | 8, 20, 21 | 3tr 65 |
. . . 4
(a ∩ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (a ∩ c) |
| 23 | | comanr1 464 |
. . . . . 6
b C (b ∩ c) |
| 24 | | comanr1 464 |
. . . . . . 7
b⊥ C
(b⊥ ∩ c⊥ ) |
| 25 | 24 | comcom6 459 |
. . . . . 6
b C (b⊥ ∩ c⊥ ) |
| 26 | 23, 25 | fh1 469 |
. . . . 5
(b ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ ))) = ((b ∩ (b ∩
c)) ∪ (b ∩ (b⊥ ∩ c⊥ ))) |
| 27 | | anass 76 |
. . . . . . . 8
((b ∩ b) ∩ c) =
(b ∩ (b ∩ c)) |
| 28 | 27 | ax-r1 35 |
. . . . . . 7
(b ∩ (b ∩ c)) =
((b ∩ b) ∩ c) |
| 29 | | anidm 111 |
. . . . . . . 8
(b ∩ b) = b |
| 30 | 29 | ran 78 |
. . . . . . 7
((b ∩ b) ∩ c) =
(b ∩ c) |
| 31 | 28, 30 | ax-r2 36 |
. . . . . 6
(b ∩ (b ∩ c)) =
(b ∩ c) |
| 32 | | dff 101 |
. . . . . . . . 9
0 = (b ∩ b⊥ ) |
| 33 | 32 | ran 78 |
. . . . . . . 8
(0 ∩ c⊥ ) =
((b ∩ b⊥ ) ∩ c⊥ ) |
| 34 | 33 | ax-r1 35 |
. . . . . . 7
((b ∩ b⊥ ) ∩ c⊥ ) = (0 ∩ c⊥ ) |
| 35 | | anass 76 |
. . . . . . 7
((b ∩ b⊥ ) ∩ c⊥ ) = (b ∩ (b⊥ ∩ c⊥ )) |
| 36 | 34, 35, 18 | 3tr2 64 |
. . . . . 6
(b ∩ (b⊥ ∩ c⊥ )) = 0 |
| 37 | 31, 36 | 2or 72 |
. . . . 5
((b ∩ (b ∩ c))
∪ (b ∩ (b⊥ ∩ c⊥ ))) = ((b ∩ c) ∪
0) |
| 38 | | or0 102 |
. . . . 5
((b ∩ c) ∪ 0) = (b
∩ c) |
| 39 | 26, 37, 38 | 3tr 65 |
. . . 4
(b ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ ))) = (b ∩ c) |
| 40 | 22, 39 | 2an 79 |
. . 3
((a ∩ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) ∩ (b ∩ ((b
∩ c) ∪ (b⊥ ∩ c⊥ )))) = ((a ∩ c) ∩
(b ∩ c)) |
| 41 | | an4 86 |
. . 3
((a ∩ b) ∩ (((a
∩ c) ∪ (a⊥ ∩ c⊥ )) ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ )))) = ((a ∩ ((a
∩ c) ∪ (a⊥ ∩ c⊥ ))) ∩ (b ∩ ((b
∩ c) ∪ (b⊥ ∩ c⊥ )))) |
| 42 | | anandir 115 |
. . 3
((a ∩ b) ∩ c) =
((a ∩ c) ∩ (b
∩ c)) |
| 43 | 40, 41, 42 | 3tr1 63 |
. 2
((a ∩ b) ∩ (((a
∩ c) ∪ (a⊥ ∩ c⊥ )) ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ )))) = ((a ∩ b) ∩
c) |
| 44 | 4, 43 | ax-r2 36 |
1
((a ∩ b) ∩ ((a
≡ c) ∩ (b ≡ c))) =
((a ∩ b) ∩ c) |