Proof of Theorem comanblem2
Step | Hyp | Ref
| Expression |
1 | | dfb 94 |
. . . 4
(a ≡ c) = ((a ∩
c) ∪ (a⊥ ∩ c⊥ )) |
2 | | dfb 94 |
. . . 4
(b ≡ c) = ((b ∩
c) ∪ (b⊥ ∩ c⊥ )) |
3 | 1, 2 | 2an 79 |
. . 3
((a ≡ c) ∩ (b
≡ c)) = (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ ))) |
4 | 3 | lan 77 |
. 2
((a ∩ b) ∩ ((a
≡ c) ∩ (b ≡ c))) =
((a ∩ b) ∩ (((a
∩ c) ∪ (a⊥ ∩ c⊥ )) ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ )))) |
5 | | comanr1 464 |
. . . . . 6
a C (a ∩ c) |
6 | | comanr1 464 |
. . . . . . 7
a⊥ C
(a⊥ ∩ c⊥ ) |
7 | 6 | comcom6 459 |
. . . . . 6
a C (a⊥ ∩ c⊥ ) |
8 | 5, 7 | fh1 469 |
. . . . 5
(a ∩ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = ((a ∩ (a ∩
c)) ∪ (a ∩ (a⊥ ∩ c⊥ ))) |
9 | | anass 76 |
. . . . . . . 8
((a ∩ a) ∩ c) =
(a ∩ (a ∩ c)) |
10 | 9 | ax-r1 35 |
. . . . . . 7
(a ∩ (a ∩ c)) =
((a ∩ a) ∩ c) |
11 | | anidm 111 |
. . . . . . . 8
(a ∩ a) = a |
12 | 11 | ran 78 |
. . . . . . 7
((a ∩ a) ∩ c) =
(a ∩ c) |
13 | 10, 12 | ax-r2 36 |
. . . . . 6
(a ∩ (a ∩ c)) =
(a ∩ c) |
14 | | dff 101 |
. . . . . . . . 9
0 = (a ∩ a⊥ ) |
15 | 14 | ran 78 |
. . . . . . . 8
(0 ∩ c⊥ ) =
((a ∩ a⊥ ) ∩ c⊥ ) |
16 | 15 | ax-r1 35 |
. . . . . . 7
((a ∩ a⊥ ) ∩ c⊥ ) = (0 ∩ c⊥ ) |
17 | | anass 76 |
. . . . . . 7
((a ∩ a⊥ ) ∩ c⊥ ) = (a ∩ (a⊥ ∩ c⊥ )) |
18 | | an0r 109 |
. . . . . . 7
(0 ∩ c⊥ ) =
0 |
19 | 16, 17, 18 | 3tr2 64 |
. . . . . 6
(a ∩ (a⊥ ∩ c⊥ )) = 0 |
20 | 13, 19 | 2or 72 |
. . . . 5
((a ∩ (a ∩ c))
∪ (a ∩ (a⊥ ∩ c⊥ ))) = ((a ∩ c) ∪
0) |
21 | | or0 102 |
. . . . 5
((a ∩ c) ∪ 0) = (a
∩ c) |
22 | 8, 20, 21 | 3tr 65 |
. . . 4
(a ∩ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (a ∩ c) |
23 | | comanr1 464 |
. . . . . 6
b C (b ∩ c) |
24 | | comanr1 464 |
. . . . . . 7
b⊥ C
(b⊥ ∩ c⊥ ) |
25 | 24 | comcom6 459 |
. . . . . 6
b C (b⊥ ∩ c⊥ ) |
26 | 23, 25 | fh1 469 |
. . . . 5
(b ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ ))) = ((b ∩ (b ∩
c)) ∪ (b ∩ (b⊥ ∩ c⊥ ))) |
27 | | anass 76 |
. . . . . . . 8
((b ∩ b) ∩ c) =
(b ∩ (b ∩ c)) |
28 | 27 | ax-r1 35 |
. . . . . . 7
(b ∩ (b ∩ c)) =
((b ∩ b) ∩ c) |
29 | | anidm 111 |
. . . . . . . 8
(b ∩ b) = b |
30 | 29 | ran 78 |
. . . . . . 7
((b ∩ b) ∩ c) =
(b ∩ c) |
31 | 28, 30 | ax-r2 36 |
. . . . . 6
(b ∩ (b ∩ c)) =
(b ∩ c) |
32 | | dff 101 |
. . . . . . . . 9
0 = (b ∩ b⊥ ) |
33 | 32 | ran 78 |
. . . . . . . 8
(0 ∩ c⊥ ) =
((b ∩ b⊥ ) ∩ c⊥ ) |
34 | 33 | ax-r1 35 |
. . . . . . 7
((b ∩ b⊥ ) ∩ c⊥ ) = (0 ∩ c⊥ ) |
35 | | anass 76 |
. . . . . . 7
((b ∩ b⊥ ) ∩ c⊥ ) = (b ∩ (b⊥ ∩ c⊥ )) |
36 | 34, 35, 18 | 3tr2 64 |
. . . . . 6
(b ∩ (b⊥ ∩ c⊥ )) = 0 |
37 | 31, 36 | 2or 72 |
. . . . 5
((b ∩ (b ∩ c))
∪ (b ∩ (b⊥ ∩ c⊥ ))) = ((b ∩ c) ∪
0) |
38 | | or0 102 |
. . . . 5
((b ∩ c) ∪ 0) = (b
∩ c) |
39 | 26, 37, 38 | 3tr 65 |
. . . 4
(b ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ ))) = (b ∩ c) |
40 | 22, 39 | 2an 79 |
. . 3
((a ∩ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) ∩ (b ∩ ((b
∩ c) ∪ (b⊥ ∩ c⊥ )))) = ((a ∩ c) ∩
(b ∩ c)) |
41 | | an4 86 |
. . 3
((a ∩ b) ∩ (((a
∩ c) ∪ (a⊥ ∩ c⊥ )) ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ )))) = ((a ∩ ((a
∩ c) ∪ (a⊥ ∩ c⊥ ))) ∩ (b ∩ ((b
∩ c) ∪ (b⊥ ∩ c⊥ )))) |
42 | | anandir 115 |
. . 3
((a ∩ b) ∩ c) =
((a ∩ c) ∩ (b
∩ c)) |
43 | 40, 41, 42 | 3tr1 63 |
. 2
((a ∩ b) ∩ (((a
∩ c) ∪ (a⊥ ∩ c⊥ )) ∩ ((b ∩ c) ∪
(b⊥ ∩ c⊥ )))) = ((a ∩ b) ∩
c) |
44 | 4, 43 | ax-r2 36 |
1
((a ∩ b) ∩ ((a
≡ c) ∩ (b ≡ c))) =
((a ∩ b) ∩ c) |