Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > combi | GIF version |
Description: Commutation theorem for Sasaki implication. (Contributed by NM, 25-Oct-1998.) |
Ref | Expression |
---|---|
combi | a C (a ≡ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comanr1 464 | . . 3 a C (a ∩ b) | |
2 | comanr1 464 | . . . 4 a⊥ C (a⊥ ∩ b⊥ ) | |
3 | 2 | comcom6 459 | . . 3 a C (a⊥ ∩ b⊥ ) |
4 | 1, 3 | com2or 483 | . 2 a C ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
5 | dfb 94 | . . 3 (a ≡ b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
6 | 5 | ax-r1 35 | . 2 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = (a ≡ b) |
7 | 4, 6 | cbtr 182 | 1 a C (a ≡ b) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: ublemc1 728 |
Copyright terms: Public domain | W3C validator |