QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  combi GIF version

Theorem combi 485
Description: Commutation theorem for Sasaki implication. (Contributed by NM, 25-Oct-1998.)
Assertion
Ref Expression
combi a C (ab)

Proof of Theorem combi
StepHypRef Expression
1 comanr1 464 . . 3 a C (ab)
2 comanr1 464 . . . 4 a C (ab )
32comcom6 459 . . 3 a C (ab )
41, 3com2or 483 . 2 a C ((ab) ∪ (ab ))
5 dfb 94 . . 3 (ab) = ((ab) ∪ (ab ))
65ax-r1 35 . 2 ((ab) ∪ (ab )) = (ab)
74, 6cbtr 182 1 a C (ab)
Colors of variables: term
Syntax hints:   C wc 3   wn 4  tb 5  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  ublemc1  728
  Copyright terms: Public domain W3C validator