| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > nbdi | GIF version | ||
| Description: Negated biconditional (distributive form). (Contributed by NM, 30-Aug-1997.) |
| Ref | Expression |
|---|---|
| nbdi | (a ≡ b)⊥ = (((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩ b⊥ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnb 95 | . 2 (a ≡ b)⊥ = ((a ∪ b) ∩ (a⊥ ∪ b⊥ )) | |
| 2 | comorr 184 | . . . . 5 a C (a ∪ b) | |
| 3 | 2 | comcom 453 | . . . 4 (a ∪ b) C a |
| 4 | 3 | comcom2 183 | . . 3 (a ∪ b) C a⊥ |
| 5 | comorr 184 | . . . . . 6 b C (b ∪ a) | |
| 6 | ax-a2 31 | . . . . . 6 (b ∪ a) = (a ∪ b) | |
| 7 | 5, 6 | cbtr 182 | . . . . 5 b C (a ∪ b) |
| 8 | 7 | comcom 453 | . . . 4 (a ∪ b) C b |
| 9 | 8 | comcom2 183 | . . 3 (a ∪ b) C b⊥ |
| 10 | 4, 9 | fh1 469 | . 2 ((a ∪ b) ∩ (a⊥ ∪ b⊥ )) = (((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩ b⊥ )) |
| 11 | 1, 10 | ax-r2 36 | 1 (a ≡ b)⊥ = (((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩ b⊥ )) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |