| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > comd | GIF version | ||
| Description: Commutation dual. Kalmbach 83 p. 23. (Contributed by NM, 27-Aug-1997.) |
| Ref | Expression |
|---|---|
| comcom.1 | a C b |
| Ref | Expression |
|---|---|
| comd | a = ((a ∪ b) ∩ (a ∪ b⊥ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comcom.1 | . . . . 5 a C b | |
| 2 | 1 | comcom4 455 | . . . 4 a⊥ C b⊥ |
| 3 | 2 | df-c2 133 | . . 3 a⊥ = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) |
| 4 | 3 | con3 68 | . 2 a = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))⊥ |
| 5 | oran 87 | . . . 4 ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) = ((a⊥ ∩ b⊥ )⊥ ∩ (a⊥ ∩ b⊥ ⊥ )⊥ )⊥ | |
| 6 | 5 | con2 67 | . . 3 ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))⊥ = ((a⊥ ∩ b⊥ )⊥ ∩ (a⊥ ∩ b⊥ ⊥ )⊥ ) |
| 7 | oran 87 | . . . . 5 (a ∪ b) = (a⊥ ∩ b⊥ )⊥ | |
| 8 | oran 87 | . . . . 5 (a ∪ b⊥ ) = (a⊥ ∩ b⊥ ⊥ )⊥ | |
| 9 | 7, 8 | 2an 79 | . . . 4 ((a ∪ b) ∩ (a ∪ b⊥ )) = ((a⊥ ∩ b⊥ )⊥ ∩ (a⊥ ∩ b⊥ ⊥ )⊥ ) |
| 10 | 9 | ax-r1 35 | . . 3 ((a⊥ ∩ b⊥ )⊥ ∩ (a⊥ ∩ b⊥ ⊥ )⊥ ) = ((a ∪ b) ∩ (a ∪ b⊥ )) |
| 11 | 6, 10 | ax-r2 36 | . 2 ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ ))⊥ = ((a ∪ b) ∩ (a ∪ b⊥ )) |
| 12 | 4, 11 | ax-r2 36 | 1 a = ((a ∪ b) ∩ (a ∪ b⊥ )) |
| Colors of variables: term |
| Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: com3ii 457 gsth 489 |
| Copyright terms: Public domain | W3C validator |